简介: Quick BI是专为云上用户量身打造的智能数据分析和可视化BI产品,帮助企业快速完成从传统的数据分析到数据云化+分析云化的转变,将企业的业务数据产出后以最快的速度被推送到各组织侧消费使用。本篇着重介绍Quick BI在可视化分析上的能力与演进之路。

Quick BI是专为云上用户量身打造的智能数据分析和可视化BI产品,帮助企业快速完成从传统的数据分析到数据云化+分析云化的转变,将企业的业务数据产出后以最快的速度被推送到各组织侧消费使用。

本篇着重介绍Quick BI在可视化分析上的能力与演进之路。

Quick BI可视分析的能力图谱

传统的报表的结果是对统计模型的解释而不是对业务的解释。所以对可视分析的期望,为企业各个业务系统提供描述、诊断、预测等数据洞察能力的不是报表,而是带有分析(洞察)和叙事能力(见解)的 DataStorytelling,Quick BI的可视化的定义也从「可视化图表」延展为「洞察+解读」。

Part1 可视化

Quick BI的可视化包含可视化图表,和模板、主题;主题支持6套默认主题背景(包含深浅皮肤色),以及用户自定义主题,适应不同的产品风格。

其中可视化图表按照分析意图分为比较类图表、趋势类图表、分布类图表、关系类图表、占比类图表、空间类图表,详细的后续会在另外一篇可视化中展开。

Part2 数据洞察-分析型组件

可视化一直是BI产品的核心能力,而Quick BI认为数据可视化要从简单的数据呈现向数据快速分析进行升级,而交互式的可视化可以明显提升数据分析的效率。

除了通过交互式的操作(钻取、联动、跳转、圈选、排除等)快速发觉数据之间的关联和组成关系,Quick BI进一步提供可交互式的图表(指标拆解图)打开全新的快速洞察方式。

新增的指标拆解图可以帮助用户自定义分析所需的指标和纬度,用户可以随时调整分析的维度和拆解顺序,在指标出现波动和异常时能够快速定位到影响原因。

同时,Quick BI全新上线动态组件支持通过将静态的数据以动态的形式进行表达。常规的饼图、条形图、气泡图等往往只能表达切片的数据,而不能表达随时间变化而变化的数据。Quick BI通过结合播放轴和时间线可以让最普通的图形也能直观的表达出业务的动态变化。

比如今年疫情中大量使用的动态柱形图让大家一目了然的了解到各个国家和地区随时间推移的疫情变化情况。这里具体比如线下、线上的用户活跃度随时间变化的情况。

Part2 数据洞察-波动分析

Quick BI除了能描述出数据当前的信息外,还可以通过将机器学习、人工智能和可视化分析的能力相结合,让分析人员快速获取和发现隐藏在数据中的价值。比如波动原因分析可以帮助用户在趋势类图形中自动拆解分析核心指标波动的原因,并以自然语言呈现各种因素对波动的影响情况。例如:对于某店铺订单数量的变化趋势如下,通过波动原因分析当前影响订单数量关键影响因素是 new_add是1111,以及区域为华北,可以针对性的询问一下是否进行了部分的运营活动和操作。

Part3 构建数据故事

为了解决业务中多报表且分散。以及单个报表内容量大,却没有旁人讲解时,阅览者无法读懂的问题,所以引入Data Storytelling的能力。

Data Storytelling构建数据故事是一种将交互式数据可视化与叙事技术相结合的数据表达方式,用引人注目和易于理解的形式将分析内容进行演示。Gartner近两年进一步重视Data storytelling在ABI领域的价值,Quick BI也结合自身的能力和国内用户的场景,推出了两种层次的数据故事构建能力。

第一个层次是多页面级别,Quick BI支持将大量的报表和链接组织成「数据门户」,可以帮助企业以一定的业务视角,层次递进的呈现数据分析体系。这样的门户可以是公司总体情况到分业务、分部门的形态,也可以是按照生产制造的各个环节一个一个展开数据内容。一个门户就是一个分析使用数据的视角,好的门户往往能清晰的表达企业的业务构成甚至战略方向。

第二个层次是页面级别,单个仪表板往往聚焦于一个分析主题或几个分析指标,常以总体概览、趋势变化、不同维度切分的方式在单个页面内进行分析。而分析者经常遇到缺乏分析思路、分析组件多,不知如何选择等问题,Quick BI新引入的「故事动线」组件,可以大大提高分析师组织分析思路和呈现数据价值的效率,让报表的访问者可以快速掌握数据背后的意义和价值。


后续还会针对以上三趴分别展开说明,敬请期待!

本文为阿里云原创内容,未经允许不得转载。

Quick BI的可视分析之路的更多相关文章

  1. Quick BI功能篇之(一):20分钟入门

    前言: 最近小编帮助隔壁团队一个小姐姐解决了个大难题:给老板汇报业绩分析,频次提高.效率提升,还得保证团队中的小伙伴们都得有点大数据时代的基本数据能力.小编觉得这么好的经验可以分享给更多志同道合的朋友 ...

  2. Quick BI助力云上大数据分析---深圳云栖大会

    在3月29日深圳云栖大会的数据分析与可视化专场中,阿里云产品专家陌停对大数据智能分析产品 Quick BI 进行了深入的剖析.大会现场的精彩分享也赢得观众们的一直认可和热烈的反响. 大数据分析之路的挑 ...

  3. 阿里云Quick BI——让人人都成为分析师

    在3月29日深圳云栖大会的数据分析与可视化专场中,阿里云产品专家潘炎峰(陌停)对大数据智能分析产品 Quick BI 进行了深入的剖析.大会现场的精彩分享也赢得观众们的一直认可和热烈的反响. Quic ...

  4. Quick BI的宝藏工具——交叉表

    对于普通的表格展示数据,相信大家都非常熟悉了,今天给大家介绍的是BI领域的分析利器-交叉表,这个在BI分析场景中使用占比最多的分析利器.通过交叉表对数据的承载和管理,用户可以一目了然地分析出各种场景指 ...

  5. Quick BI的SQL传参建模可以用在什么场景

    Quick B的SQL传参建模功能提供基于SQL的数据加工处理能力,减轻了IT支撑人员的工作量.在即席查询SQL中,我们用物理字段显示别名来表示参数的占位符,配置完占位符后,就可以在查询控件中进行参数 ...

  6. Quick BI支持哪些数据源(配置操作篇)

    Quick BI 潜心打造了核心技术底座(OLAP分析引擎),实现了SQL解析.SQL调度.SQL优化.查询加速等基础能力,支撑Quick BI的数据分析和查询加速.OLAP分析引擎包括数据源连接.数 ...

  7. Quick BI 支持多种数据源进行多维分析

    一.摘要 随着互联网的高速发展,数据量爆发式增长的同时,数据的存储形式也开始呈现出多样性,有结构化存储,如 Mysql, Oracle, SQLServer 等,半结构化甚至非结构化存储,如HBase ...

  8. Quick BI 的模型设计与生成SQL原理剖析

    一.摘要 随着物联网的告诉发展,数据量呈现井喷式的增长,如何来分析和使用这些数据,使数据产生商业价值,已经变得越来越重要.值得高兴的是,当前越来越多的人已经意识到了用数据分析决定商业策略的重要性,也都 ...

  9. 当移动数据分析需求遇到Quick BI

    我叫洞幺,是一名大型婚恋网站“我在这等你”的资深老员工,虽然在公司五六年,还在一线搬砖.“我在这等你”成立15年,目前积累注册用户高达2亿多,在我们网站成功牵手的用户达2千多万.目前我们的公司在CEO ...

  10. Quick BI 3.0 - 强大的多维分析表格:交叉表

    写在开头 对于普通的表格展示数据,相信大家都非常熟悉了,今天给大家介绍的是BI领域的分析利器-交叉表,这个在BI分析场景中使用占比最多的分析利器.通过交叉表对数据的承载和管理,用户可以一目了然地分析出 ...

随机推荐

  1. x86架构的内存溢出攻击原理演示(加强对计算机运行原理的理解,说明内存溢出的危害)

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  2. 配置Tomcat服务器

    一:修改服务器端口 访问tomcat主页的时候,输入的是localhost:8080,说明tomcat的端口是8080,那么怎么修改端口号呢? 我们要先认识配置文件 用浏览器打开tomcat下conf ...

  3. 记录--从原理分析vue开发环境搭建的全部过程

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 平时大家开发vue项目的时候,相信大部分人都是使用 vue-cli脚手架生成的项目架构,然后 npm run install 安装依赖,n ...

  4. 【Oracle】Oracle表空间数据文件大小设置

    Oracle数据文件默认大小上限是32G,如果要数据文件大于32G,需要在数据库创建之初就设置好. 表空间数据文件容量与DB_BLOCK_SIZE有关,在初始建库时,DB_BLOCK_SIZE要根据实 ...

  5. linux xfce 在文件管理器里点击运行shell脚本文件

    1.打开 Settings Editor 2.点击左边的 thunar 3.点击右边的 添加 ,在属性中输入 /misc-exec-shell-scripts-by-default 在类型中选择布尔类 ...

  6. 线段树(SegmentTree)

    对于数组应用于区间染色实现为On,而线段树是O(logn) 什么是线段树:对于一个二叉树,每一个节点存储的是一个线段或是一个区间相应的信息. 查询 更新 #pragma once #include & ...

  7. #珂朵莉树#CF896C Willem, Chtholly and Seniorious

    题目 支持区间加,区间推平,询问区间第\(k\)小, 以及询问区间\(\sum{a_i^x}\pmod y\),数据随机 分析 由于数据随机,那么区间推平的概率为\(\frac{1}{4}\), 考虑 ...

  8. #斐波那契#洛谷 3424 [POI2005] SUM-Fibonacci Sums

    题目 已知\(x,y\)的斐波那契表示,求\(x+y\)的斐波那契表示 分析 显然得到两条性质: \(f_{i+1}=f_{i-1}+f_i\) \(2f_i=f_{i+1}+f_{i-2}\) 那么 ...

  9. #贪心,树#C 平衡的树

    分析 处理出子树内剩余删减以及最大的剩余\(a\)和, 如果删了还是超过\(b\)输出无解 代码 #include <cstdio> #include <cctype> #de ...

  10. selenium报错:Message: stale element reference: element is not attached to the page document

    在使用selenium时,报了一个错误 报错的原因: 所引用的元素已过时,不再依附于当前页面.通常情况下,这是因为页面进行了刷新或跳转 解决方法: 重新定位元素 代码示例: # 旧代码(报错) lis ...