1.1 什么是字节码?

Java 在刚刚诞生之时曾经提出过一个非常著名的口号: “一次编写,到处运行(write once,run anywhere)”,这句话充分表达了软件开发人员对冲破平台界限的渴求。“与平台无关”的理想最终实现在操作系统的运用层上: 虚拟机提供商开发了许多可以运行在不同平台上的虚拟机,这些虚拟机都可以载入和执行同一种平台无关的字节码,从而实现了程序的“一次编写到处运行”。

各种不同平台的虚拟机与所有平台都统一使用的程序存储格式—字节码(ByteCode),因此,可以看出字节码对 Java 生态的重要性。之所以被称为字节码,是因为字节码是由十六进制组成的,而 JVM(Java Virtual Machine)以两个十六进制为一组,即以字节为单位进行读取。在 Java 中使用 javac 命令把源代码编译成字节码文件,一个 .java 源文件从编译成 .class 字节码文件的示例如图 1 所示:

图 1

对于从事基于 JVM 的语言的开发人员来说,比如: Java,了解字节码可以更准确、更直观的理解 Java 语言中更深层次的东西,比如通过字节码,可以很直观的看到 volatile 关键字如何在字节码上生效。另外,字节码增强技术在各种 ORM 框架、Spring AOP、热部署等一些应用中经常使用,深入理解其原理对于我们来说大有裨益。由于 JVM 规范的存在,只要最终生成了符合 JVM 字节码规范的文件都可以在 JVM 上运行,因此,这个也给其它各种运行在 JVM 上的语言(如: ScalaGroovyKotlin)提供了一个机会,可以扩展 Java 没有实现的特性或者实现一些语法糖。

接下来就让我们就一起看看这个字节码文件结构到底是什么样的。

1.2 Java 字节码结构

Java 源文件通过用 javac 命令编译后就会得到 .class 结尾的字节码文件,比如一个简单的 JavaCodeCompilerDemo 类如图 2 所示:

图 2

编译后生成的 .class 字节码文件,打开后是一堆 十六进制 数,如图 3 所示:

图 3

在上节提过,JVM 对于字节码规范是有要求的,打开编译后的字节码文件看似混乱无章,其实它是符合一定的结构规范的,JVM 规范要求每一个字节码文件都要由十部分固定的顺序组成的,接下来我们将一一介绍这部分,整体的组成结构如图 4 所示:

图 4

(1)魔数(Magic Number)

每个字节码文件的头 4 个字节称为 魔数(Magic Number),它的唯一作用是确定这个文件是否为一个能被虚拟机接受的 Class 文件。很多文件存储标准中都使用魔数来进行身份识别,譬如图片格式,如 gif 或者 jpg 等在文件头中都存有魔数。使用魔数而不是扩展名来进行识别主要是基于安全方面的考虑,因为文件扩展名可以随意改动。魔数的固定值为: 0xCAFEBABE,魔数放在文件头,JVM 可以根据文件的开头来判断这个文件是否可能是一个字节码文件,如果是,才会进行之后的操作。

有趣的是,魔数的固定值是 Java 之父 James Gosling 制定的,为 CafeBabe(咖啡宝贝),而 Java 的图标为一杯咖啡。

(2)版本号(Version)

版本号为魔数之后的 4 个字节,前两个字节表示次版本号(Minor Version),后两个字节表示主版本号(Major Version),上图 3 中版本号为: “00 00 00 34”,次版本号转化为十进制为 0,主版本号转化为十进制 52(3 * 16^1 + 4 * 16^0 = 52),在 Oracle 官网中查询序号 52 对应的 JDK 版本为 1.8,所以编译该源代码文件的 Java 版本为 1.8.0。

(3)常量池(Constant Pool)

紧接着主版本号之后的字节是常量池入口。常量池中存储两种类型常量: 字面量和符号运用。字面量为代码中声明为 final 的常量值,符号引用如类和接口的全局限定名、字段的名称和描述符、方法的名称和描述符。常量池整体上分为两部分: 常量池计数器和常量池数据区,如图 5 所示:

图 5

常量池计数器(constant_pool_count): 由于常量池的数量不固定,所以需要先放置两个字节来表示常量池容量计数值,图 2 示例代码的字节码的前十个字节如下图 6 所示,将十六进制的 17 转为十进制的值为 33 (1 * 16^1 + 7 * 16^0 = 33),排除下标 0,也就是说这个类文件有 32 个常量。

图 6

常量池数据区: 数据区是由(constant_pool_count - 1)个 cp_info 结构组成,一个 cp_info 的结构对应一个常量。在字节码中共有 14 种类型的 cp_info ,每种类型的结构都是固定的,如图 7 所示:

图 7

以 CONSTANT_Utf8_info 为例,它的结构如表 1 所示:

名称 长度
tag 1 字节 01 对应图 7 中 CONSTANT_Utf8_info 的标志栏中的值
length 2 字节 该 utf8 字符串的长度
bytes length 字节 length 个字节的具体数据

表 1
首先第一个字节 tag,它的取值对应图 7 中的 Tag,由于它的类型是 CONSTANT_Utf8_info,所以值为 01(十六进制)。接下来两个字节标识该字符串的长度 length,然后 length 个字节为这个字符串具体的值。从图 3 的字节码中摘取一个 cp_info 结构,将它翻译过来后,其含义为: 该常量为 utf8 字符串,长度为 7 字节,数据为: numberA,如图 8 所示:

图 8

其它类型的 cp_info 结构在本文不在细说,和 CONSTANT_Utf8_info 的结构大同小异,都是先通过 tag 来标识类型,然后后续的 n 个字节来描述长度和数据。等我们对这些结构比较了解了之后,我们可以通过: javap -verbose JavaCodeCompilerDemo 命令查看 JVM 反编译后的完整常量池,可以看到反编译结果可以将每一个 cp_info 结构的类型和值都很明确的呈现出来,如图 9 所示:

图 9

(4)访问标志(access_flag)

常量池结束之后的两个字节,描述该 Class 是类还是接口,以及是否被 PublicAbstractFinal 等修饰符修饰。JVM 规范规定了如下表 2 所示的 9 种访问标志。需要注意的是,JVM 并没有穷举所有的访问标志,而是使用 按位或 操作来进行描述的,比如某个类的修饰符为 public final,则对应的访问修饰符的值为 ACC_PUBLIC | ACC_FINAL,即 0x0001 | 0x0010 = 0x0011

标志名称 标志值 含义
ACC_PUBLIC 0x0001 字段是否为 public
ACC_PRIVATE 0x0002 字段是否为 private
ACC_PROTECTED 0x0004 字段是否为 protected
ACC_STATIC 0x0008 字段是否为 static
ACC_FINAL 0x0010 字段是否为 final
ACC_VOLATILE 0x0040 字段是否为 volatile
ACC_TRANSIENT 0x0080 字段是否为 transient
ACC_SYNCHETIC 0x1000 字段是否为编译器自动产生
ACC_ENUM 0x4000 字段是否为 enum

表 2

(5)当前类名(this_class)

访问标志后的两个字节,描述的是当前类的全限定名。这两个字节保存的值为常量池中的索引值,根据索引值就能在常量池中找到这个类的全限定名。

(6)父类名称(super_class)

当前类名的后两个字节,描述父类的全限定名。这两个字节保存的值也是在常量池中的索引值,根据索引值就能在常量池中找到这个类的父类的全限定名。

(7)接口信息(interfaces)

父类名称后的两个字节,描述这个类的接口计数器,即: 当前类或父类实现的接口数量。紧接着的 n 个字节是所有的接口名称的字符串常量在常量池的索引值。

(8)字段表(field_table)

字段表用于描述类和接口中声明的变量,包含类级别的变量以及实例变量,但是不包含方法内部声明的 局部变量。字段表也分为两部分,第一部分是两个字节,描述字段个数,第二部分是每个字段的详细信息 field_info。字段表结构如图 10 所示:

图 10

以图 3 中的字节码字段表为例,如下图 11 所示。其中字段的访问标志查表 2,002 对应为 Private,通过索引下标在图 9 中常量池分别得到字段名为: numberA,描述符为: I(在JVM 中的I代表 Java 中的 int)。综上,就可以唯一确定出类 JavaCodeCompilerDemo 中声明的变量为: private int numberA

图 11

(9)方法表(method_table)

字段表结束后为方法表,方法表也是由两部分组成,第一部分为两个字节描述方法的个数,第二个部分为每个方法的详细信息。方法的详细信息包括:方法的访问标志、方法名、方法的描述符以及方法的属性,如图 12 所示:

图 12

方法的权限修饰符依然可以通过图 9 的值查询到,方法名和方法的描述符都是常量池的索引值,可以通过索引值在常量池中查询得到。而方法属性这个部分比较复杂,我们可以借助 javap -verbose 将其反编译为人们可读的信息进行解读。如图 13 所示。我们可以看到属性中包含三个部分:

  1. Code 区: 源代码对应的 JVM 指令操作码,我们在字节码增强的时候重点操作的就是这个部分。
  2. LineNumberTable: 行号表,将 Code 区的操作码和源代码的行号对应,Debug 时会起到作用(即: 当源代码向下走一行,相应的需要走几个 JVM 指令操作码)。
  3. LocalVariableTable: 本地变量表,包含 this 和局部变量,之所以可以在每一个非 static 的方法内部都可以调用到 this,是因为 JVM 将 this 作为每个方法的第一个参数隐式进行传入。

    图 13

(10)附加属性表(additional_attribute_table)

字节码的最后一部分,存放了在文件中类或接口所定义的属性的基本信息。

1.3 Java 字节码操作集合

在图 13 中,Code 区的编号是 0 ~ 10,就是 .java 源文件的方法源代码编译后让 JVM 真正执行的操作码。为了帮助人们理解,反编译后看到的是十六进制操作码所对应的助记符,十六进制值操作码和助记符的对应关系,以及每个操作码的具体作用可以查看 Oracle 官网,在需要的时候查阅即可。比如上图 13 的助记符为 iconst_2,对应图 3 中的字节码 0x05,作用是将 int 值 2 压入操作数栈中。以此类推,对 0 ~ 10 的助记符理解后就是整个 sum() 方法的操作数码实现。

1.4 查看字节码工具

如果我们每次反编译都要使用 javap 命令的话,确实比较繁琐,这里我推荐大家一个 IDEA 插件: jclasslib。使用效果如图 14 所示: 代码编译后在菜单栏: View -> Show Bytecode With jclasslib,可以很直观地看到当前字节码文件的类信息、常量池、方法区等信息,非常方便。

图 14

1.5 总结

Java 中字节码文件是 JVM 执行引擎的数据入口,也是 Java 技术体系的基础构成之一。了解字节码文件的组成结构对后面进一步了解虚拟机和深入学习 Java 有很重要的意义。本文较为详细的讲解了字节码文件结构的各个组成部分,以及每个部分的定义、数据结构和使用方法。强烈建议自己动手分析一下,会理解得更加深入。

深入了解 Java 字节码的更多相关文章

  1. 在Eclipse里查看Java字节码

    要理解 Java 字节码,比较推荐的方法是自己尝试编写源码对照字节码学习.其中阅读 Java 字节码的工具必不可少.虽然javap可以以可读的形式展示出.class 文件中字节码,但每次改动源码都需调 ...

  2. JAVA字节码解析

    Java字节码指令 Java 字节码指令及javap 使用说明 ### java字节码指令列表 字节码 助记符 指令含义 0x00 nop 什么都不做 0x01 aconst_null 将null推送 ...

  3. 【转】在Eclipse里查看Java字节码

    要理解 Java 字节码,比较推荐的方法是自己尝试编写源码对照字节码学习.其中阅读 Java 字节码的工具必不可少.虽然javap可以以可读的形式展示出.class 文件中字节码,但每次改动源码都需调 ...

  4. Java字节码(.class文件)格式详解(一)

    原文链接:http://www.blogjava.net/DLevin/archive/2011/09/05/358033.html 小介:去年在读<深入解析JVM>的时候写的,记得当时还 ...

  5. 通过Java字节码发现有趣的内幕之String篇(上)(转)

    原文出处: jaffa 很多时候我们在编写Java代码时,判断和猜测代码问题时主要是通过运行结果来得到答案,本博文主要是想通过Java字节码的方式来进一步求证我们已知的东西.这里没有对Java字节码知 ...

  6. 掌握Java字节码(转)

    Java是一门设计为运行于虚拟机之上的编程语言,因此它需要一次编译,处处运行(当然也是一次编写,处处测试).因此,安装到你系统上的JVM是原生的程序,而运行在它之上的代码是平台无关的.Java字节码就 ...

  7. Java字节码操纵框架ASM小试

    本文主要内容: ASM是什么 JVM指令 Java字节码文件 ASM编程模型 ASM示例 参考资料汇总 JVM详细指令 ASM是什么 ASM是一个Java字节码操纵框架,它能被用来动态生成类或者增强既 ...

  8. Java:从面试题“i++和++i哪个效率高?"开始学习java字节码

    今天看到一道面试题,i++和++i的效率谁高谁低. 面试题的答案是++i要高一点. 我在网上搜了一圈儿,发现很多回答也都是同一个结论. 如果早个几年,我也会认同这个看法,但现在我负责任的说,这个结论是 ...

  9. Java字节码—ASM

    前言 ASM 是什么 官方介绍:ASM is an all purpose Java bytecode manipulation and analysis framework. It can be u ...

  10. 打造一个简单的Java字节码反编译器

    简介 本文示范了一种反编译Java字节码的方法,首先通过解析class文件,然后将解析的结果转成java代码.但是本文并没有覆盖所有的class文件的特性和指令,只针对部分规范进行解析. 所有的代码代 ...

随机推荐

  1. Java获取客户端IP地址进行记录

    1.编写工具类IpUtils public class IpUtils { /** * 访问IP:0:0:0:0:0:0:0:1 * 访问IP:192.168.1.10 */ private stat ...

  2. DynamicHead:基于像素级路由机制的动态FPN | NIPS 2020

    论文提出了细粒度动态detection head,能够基于路由机制动态地融合不同FPN层的像素级局部特征进行更好的特征表达.从设计的路由空间来看是一个十分耗时的操作,但是作者设计的高效路由器实际计算十 ...

  3. KingbaseES Json 系列十:Json数组构造函数

    KingbaseES Json 系列十--Json数组构造函数(ARRAY_TO_JSON,JSONB_BUILD_ARRAY,JSON_ARRAY,JSON_BUILD_ARRAY) JSON 数据 ...

  4. CentOS 7 上搭建nginx来部署静态网页

    目录 0. Nginx简介 1. 安装以及使用 1.1 安装和启动 1.2 配置服务器的访问地址 1.3 重启nginx,打开浏览器访问 0. Nginx简介 Nginx (engine x) 是一个 ...

  5. .NET Core WebApi 多语言本地化,动态切换多语言

    .NET Core WebApi 多语言本地化,动态切换多语言 原生的.net core webapi 动态多语言本地话 具体更多详细内容,可以参考官方文档 首先看效果图 整体项目结构图 开始前需要讲 ...

  6. #矩阵乘法#洛谷 3702 [SDOI2017]序列计数

    题目链接 分析 考虑容斥,用总方案减去全是合数的方案数, 可以发现 \(n\) 很大,\(p\) 很小,直接用矩阵乘法转移即可 代码 #include <cstdio> #include ...

  7. Bootstrap实战 - 评论列表

    一.介绍 社交媒体网站盛行,人们常常会使用评论表达自己的观点,评论功能已然成为网站的一部分. 二.知识点 2.1 媒体对象 官方解释:这是一个抽象的样式,用以构建不同类型的组件,这些组件都具有在文本内 ...

  8. OpenHarmony系统使用gdb调试init

      前言 OpenAtom OpenHarmony(简称"OpenHarmony")适配新的开发板时,启动流程init大概率会出现问题,其为内核直接拉起的第一个用户态进程,问题定位 ...

  9. OpenHarmony将携新成果亮相HDC2022

     第四届华为开发者大会 2022(Together)将于11月4日-6日在东莞召开,OpenAtom OpenHarmony(以下简称"OpenHarmony")将携新生态成果亮相 ...

  10. OpenHarmony技术挑战课题征集

    OpenHarmony技术挑战课题征集 OpenAtom OpenHarmony(以下简称"OpenHarmony")是由开放原子开源基金会(OpenAtom Foundation ...