题目传送门


分析

前置知识:\(\sum_{d|n}\mu(d)=[n==1]\),\(\sum_{d|n}\mu(d)\frac{n}{d}=\varphi(n)\)

把最小公倍数拆开可以得到

\[=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\left(\frac{ij}{\gcd(i,j)\gcd(i,k)}\right)^{f(type)}
\]

一个一个类型解决,并且拆开分子分母,先看 \(type=0\) 的情况,

分子 \(=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C(ij)=[(A!)^B(B!)^A]^C\)

分母以 \(\gcd(i,j)\) 为例也即是 \(=\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\gcd(i,j)\)

枚举 \(d=\gcd(i,j)\) 也即是

\[\large =\left(\prod_{d=1}^{\min\{A,B\}}d^{\sum_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}[\gcd(i,j)==1]}\right)^C
\]
\[\large =\left(\prod_{d=1}^{\min\{A,B\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor\right\}}d^{\mu(t)\left\lfloor\frac{A}{dt}\right\rfloor\left\lfloor\frac{B}{dt}\right\rfloor}\right)^C
\]

枚举 \(i=dt\) 即

\[\large =\left(\prod_{i=1}^{\min\{A,B\}}\left[\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right]^{\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\right)^C
\]

设 \(f(n)=\prod_{d|n}d^{\mu\left(\frac{n}{d}\right)}\),然后整个就可以整除分块。

设 \(S1(A,B)=\prod_{i=1}^{\min\{A,B\}}f(i)^{\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\)

那么合起来当 \(type=0\) 时答案为 \(\large \frac{\left[(A!)^B(B!)^A\right]^C}{S1(A,B)^CS1(A,C)^B}\)

再看 \(type=1\) 的情况,设 \(c2(n)=\binom{n+1}{2}\) 分子为

\[\large =\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C(ij)^{ijk}=\left[\prod_{i=1}^A\left(i^i\right)^{c2(B)}\prod_{j=1}^B\left(j^j\right)^{c2(A)}\right]^{c2(C)}
\]

设 \(g(n)=\prod_{i=1}^n\left(i^i\right)\),那也就是 \(=\left[g(A)^{c2(B)}g(B)^{c2(A)}\right]^{c2(C)}\)

分母同样以 \(\gcd(i,j)\) 为例, 即为 \(\prod_{i=1}^A\prod_{j=1}^B\prod_{k=1}^C\gcd(i,j)^{ijk}\)

枚举 \(d=\gcd(i,j)\),也即是

\[\large =(\prod_{d=1}^{\min\{A,B\}}d^{d^2\sum_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}ij[\gcd(i,j)==1]})^{c2(C)}
\]
\[\large =\left(\prod_{d=1}^{\min\{A,B\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor\right\}}d^{(dt)^2\mu(t)\left\lfloor\frac{A}{dt}\right\rfloor\left\lfloor\frac{B}{dt}\right\rfloor}\right)^{c2(C)}
\]

枚举 \(i=dt\) 即

\[\large =\left(\prod_{i=1}^{\min\{A,B\}}\left[\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right]^{i^2\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\right)^{c2(C)}
\]

设 \(S2(A,B)=\prod_{i=1}^{\min\{A,B\}}f(i)^{i^2\left\lfloor\frac{A}{i}\right\rfloor\left\lfloor\frac{B}{i}\right\rfloor}\)

那么合起来当 \(type=1\) 时答案为 \(\large \frac{\left[g(A)^{c2(B)}g(B)^{c2(A)}\right]^{c2(C)}}{S2(A,B)^CS2(A,C)^B}\)

再看 \(type=2\) 的情况,

分子 \(=\prod_{i=1}^{A}\prod_{j=1}^B\prod_{k=1}^C(ij)^{\gcd(i,j,k)}\)

枚举 \(d=\gcd(i,j,k)\),也即是

\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{d}\right\rfloor}(ijd^2)^{d[gcd(i,j,k)==1]}
\]
\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor,\left\lfloor\frac{C}{d}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{dt}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{dt}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{dt}\right\rfloor}(ij(dt)^2)^{d\mu(t)}
\]

枚举 \(o=dt\),也即是

\[\large= \prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(ijo^2)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}=\prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(ij)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]
\[\large=\left(\prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\right)\left(\prod_{o=1}^{\min\{A,B,C\}}\left[\left(\left\lfloor\frac{A}{o}\right\rfloor!\right)^{\left\lfloor\frac{B}{o}\right\rfloor}\left(\left\lfloor\frac{B}{o}!\right\rfloor\right)^{\left\lfloor\frac{A}{o}\right\rfloor}\right]^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\right)
\]

分母如果先枚举 \(\gcd(i,j)\) 里面向下取整的式子无法预处理出来,

以 \(\gcd(i,j)\) 为例,不妨先枚举 \(\gcd(i,j,k)\)

\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{d}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{d}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{d}\right\rfloor}(d\gcd(i,j))^{d[gcd(i,j,k)==1]}
\]
\[=\prod_{d=1}^{\min\{A,B,C\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{d}\right\rfloor,\left\lfloor\frac{B}{d}\right\rfloor,\left\lfloor\frac{C}{d}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{dt}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{dt}\right\rfloor}\prod_{k=1}^{\left\lfloor\frac{C}{dt}\right\rfloor}(\gcd(i,j)dt)^{d\mu(t)}
\]

枚举 \(o=dt\),也即是

\[\large= \prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}(\gcd(i,j)o)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]

实际上由于分子分母都具有 \(\large \prod_{o=1}^{\min\{A,B,C\}}o^{2\varphi(o)\left\lfloor\frac{A}{o}\right\rfloor\left\lfloor\frac{B}{o}\right\rfloor\left\lfloor\frac{C}{o}\right\rfloor}\)(分母上式要算两次)

设 \(\large S3(A,B,C)=\prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\left\lfloor\frac{A}{o}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{o}\right\rfloor}{\gcd(i,j)}^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\)

所以合起来可以进行第一步化简

继续看分母,枚举 \(d=\gcd(i,j)\)

\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{d=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}\prod_{i=1}^{\left\lfloor\frac{A}{od}\right\rfloor}\prod_{j=1}^{\left\lfloor\frac{B}{od}\right\rfloor}d^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor[\gcd(i,j)==1]}
\]
\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{d=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}\prod_{t=1}^{\min\left\{\left\lfloor\frac{A}{od}\right\rfloor,\left\lfloor\frac{B}{od}\right\rfloor,\left\lfloor\frac{C}{od}\right\rfloor\right\}} d^{\varphi(o)\mu(t)\left\lfloor\frac{C}{o}\right\rfloor\left\lfloor\frac{A}{odt}\right\rfloor\left\lfloor\frac{B}{odt}\right\rfloor}
\]

枚举 \(i=dt\),则

\[\large =\prod_{o=1}^{\min\{A,B,C\}}\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}{\left(\prod_{d|i}d^{\mu\left(\frac{i}{d}\right)}\right)}^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}
\]
\[\large =\prod_{o=1}^{\min\{A,B,C\}}\left(\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}f(i)^{\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}\right)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}
\]

那么 \(\large S3(A,B,C)=\prod_{o=1}^{\min\{A,B,C\}}\left(\prod_{i=1}^{\min\left\{\left\lfloor\frac{A}{o}\right\rfloor,\left\lfloor\frac{B}{o}\right\rfloor,\left\lfloor\frac{C}{o}\right\rfloor\right\}}f(i)^{\left\lfloor\frac{A}{oi}\right\rfloor\left\lfloor\frac{B}{oi}\right\rfloor}\right)^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}\)

合起来当 \(type=2\) 时答案为

\[\large =\frac{\prod_{o=1}^{\min\{A,B,C\}}\left[\left(\left\lfloor\frac{A}{o}\right\rfloor!\right)^{\left\lfloor\frac{B}{o}\right\rfloor}\left(\left\lfloor\frac{B}{o}!\right\rfloor\right)^{\left\lfloor\frac{A}{o}\right\rfloor}\right]^{\varphi(o)\left\lfloor\frac{C}{o}\right\rfloor}}{S3(A,B,C)S3(A,C,B)}
\]

以上需要预处理的函数都可以在 \(O(n\log{n})\) 内预处理出来,瓶颈时间复杂度即求 \(S3(A,B,C)\) 时为 \(O(Tn^{\frac{3}{4}}\log{n})\)


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;
const int N=100011;
int mu[N],phi[N],fac[N],inv[N],prime[N],c2[N];
int Cnt,f[N],F[N],invf[N],g[N],invF[N],T,mod,Phi;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
int mo(int x,int y){return x+y>=Phi?x+y-Phi:x+y;}
int min(int a,int b){return a<b?a:b;}
void Pro(int n){
mu[1]=phi[1]=fac[0]=fac[1]=inv[0]=inv[1]=1;
for (int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod;
for (int i=2;i<=n;++i){
if (!phi[i]) prime[++Cnt]=i,phi[i]=i-1,mu[i]=-1;
for (int j=1;j<=Cnt&&prime[j]<=n/i;++j){
phi[i*prime[j]]=phi[i]*phi[prime[j]];
if (i%prime[j]==0){
phi[i*prime[j]]+=phi[i];
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for (int i=1;i<=n;++i) phi[i]=mo(phi[i],phi[i-1]);
for (int i=1;i<=n;++i) c2[i]=(c2[i-1]+i)%Phi;
for (int i=0;i<=n;++i) f[i]=1,g[i]=ksm(i,i);
for (int i=1;i<=n;++i) g[i]=1ll*g[i-1]*g[i]%mod;
for (int i=1;i<=n;++i)
for (int j=i;j<=n;j+=i)
if (mu[j/i]==1) f[j]=1ll*f[j]*i%mod;
else if (mu[j/i]==-1) f[j]=1ll*f[j]*inv[i]%mod;
for (int i=0;i<=n;++i) F[i]=ksm(f[i],1ll*i*i%Phi);
for (int i=1;i<=n;++i) f[i]=1ll*f[i-1]*f[i]%mod;
for (int i=1;i<=n;++i) F[i]=1ll*F[i-1]*F[i]%mod;
for (int i=1;i<=n;++i) inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (int i=0;i<=n;++i) invf[i]=ksm(f[i],mod-2);
for (int i=0;i<=n;++i) invF[i]=ksm(F[i],mod-2);
}
int query1(int n,int m){
int t=min(n,m),ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=1ll*ans*ksm(1ll*f[r]*invf[l-1]%mod,1ll*(n/l)*(m/l)%Phi)%mod;
}
return ans;
}
int query2(int n,int m){
int t=min(n,m),ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=1ll*ans*ksm(1ll*F[r]*invF[l-1]%mod,1ll*c2[n/l]*c2[m/l]%Phi)%mod;
}
return ans;
}
int query3(int A,int B,int C){
int t=min(A,min(B,C)),ans=1,Ans=1;
for (int l=1,r;l<=t;l=r+1){
r=min(A/(A/l),min(B/(B/l),C/(C/l)));
int _A=A/l,_B=B/l,_C=C/l,sum=1,tt=1ll*mo(phi[r],Phi-phi[l-1])*(C/l)%Phi;
Ans=1ll*Ans*ksm(1ll*ksm(fac[A/l],B/l)*ksm(fac[B/l],A/l)%mod,tt)%mod;
for (int L=1,R;L<=_A&&L<=_B;L=R+1)
R=min(_A/(_A/L),_B/(_B/L)),sum=1ll*sum*ksm(1ll*f[R]*invf[L-1]%mod,1ll*(_A/L)*(_B/L)%Phi)%mod;
ans=1ll*ans*ksm(sum,tt)%mod,sum=1,tt=1ll*mo(phi[r],Phi-phi[l-1])*(B/l)%Phi;
for (int L=1,R;L<=_A&&L<=_C;L=R+1)
R=min(_A/(_A/L),_C/(_C/L)),sum=1ll*sum*ksm(1ll*f[R]*invf[L-1]%mod,1ll*(_A/L)*(_C/L)%Phi)%mod;
ans=1ll*ans*ksm(sum,tt)%mod;
}
return 1ll*Ans*ksm(ans,mod-2)%mod;
}
int main(){
T=iut(),mod=iut(),Phi=mod-1,Pro(N-11);
for (int i=1;i<=T;++i){
int A=iut(),B=iut(),C=iut();
print(1ll*ksm(1ll*ksm(fac[A],B)*ksm(fac[B],A)%mod,C)*ksm(1ll*ksm(query1(A,B),C)*ksm(query1(A,C),B)%mod,mod-2)%mod),putchar(32);
print(1ll*ksm(1ll*ksm(g[A],c2[B])*ksm(g[B],c2[A])%mod,c2[C])*ksm(1ll*ksm(query2(A,B),c2[C])*ksm(query2(A,C),c2[B])%mod,mod-2)%mod);
putchar(32),print(query3(A,B,C)),putchar(10);
}
return 0;
}

#莫比乌斯反演,欧拉函数#洛谷 5518 [MtOI2019]幽灵乐团的更多相关文章

  1. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  2. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  3. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  4. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  5. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  7. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  8. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  9. BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...

  10. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

随机推荐

  1. Redis原理再学习02:数据结构-动态字符串sds

    Redis原理再学习:动态字符串sds 字符 字符就是英文里的一个一个英文字母,比如:a.中文里的单个汉字,比如:好. 字符串就是多个字母或多个汉字组成,比如字符串:redis,中文字符串:你好吗. ...

  2. 迁移mm_wiki数据实践记录

    写在前面 虽然我的随笔大部分都是记录在静态博客站点和博客园平台的,但是有一些临时的想法还是使用了wiki来记录. 经过多次试用和对比之后,最终选择了mm-wiki来作为自托管的wiki系统. mm-w ...

  3. django学习第十二天--ajax请求和csrftoken认证的三种方式

    基于cookie的登录认证装饰器 def check_login(f): def inner(request,*args,**kwargs): is_login = request.COOKIES.g ...

  4. 使用go module导入本地包

    go module是Go1.11版本之后官方推出的版本管理工具,并且从Go1.13版本开始,go module将是Go语言默认的依赖管理工具. 前提 假设我们有learngo和mypackage两个 ...

  5. .NET Core 集成微信支付签名错误

    .NET Core 集成微信支付签名错误 The provided data is tagged with 'Universal' class value '16', but it should ha ...

  6. 【Azure 应用服务】在App Service for Windows中实现反向代理

    问题描述 如何在App Service for Windows(.NET Stack)中,如何实现反向代理呢? 正向代理:客户端想要访问一个服务器,但是它可能无法直接访问这台服务器,这时候这可找一台可 ...

  7. 13 Codeforces Round 886 (Div. 4)G. The Morning Star(简单容斥)

    G. The Morning Star 思路:用map记录x,y,以及y-x.y+x 从前往后统计一遍答案即可 公式\(ans+=cnt[x]+cnt[y]-2 * cnt[x,y]+cnt[y+x] ...

  8. dnsmasq 本地局域网DNS服务器搭建

    项目背景 因为本地环境需要使用域名进行调试,需要DNS服务器 DNS 机器IP:192.168.5.249   dnsmasq 服务端部署 #01 关闭防火墙 systemctl stop firew ...

  9. vue-cli-service build 时间戳 方便查看bug发布时间和项目发布时间对比

    vue.config.js let ret = '' const date = new Date() ret += date.getFullYear() ret += '-'+ (date.getMo ...

  10. 泰凌微TLSR8258芯片解决方案开发之串口打印级别设置

    一  TRSR8258简介 该芯片是泰凌微推出来的一款纯ble的芯片,接口丰富,功耗低,资源丰富,非常适合做可穿戴物联网设备,笔者拿这颗芯片做了不少方案,感觉非常好用,所以这里写一下使用心得. 二 串 ...