1、小故事

故事角色

  • 老王 - JVM

  • 小南 - 线程

  • 小女 - 线程

  • 房间 - 对象

  • 房间门上 - 防盗锁 - Monitor-重量级锁

  • 房间门上 - 小南书包 - 轻量级锁

  • 房间门上 - 刻上小南大名 - 偏向锁 -对象专属于某个线程使用

  • 批量重刻名 - 一个类的偏向锁撤销到达 20 阈值 -批量重偏向

  • 不能刻名字 - 批量撤销该类对象的偏向锁,设置该类不可偏向

小南要使用房间保证计算不被其它人干扰(原子性),最初,他用的是防盗锁,当上下文切换时,锁住门。这样,即使他离开了,别人也进不了门,他的工作就是安全的。

但是,很多情况下没人跟他来竞争房间的使用权。小女是要用房间,但使用的时间上是错开的,小南白天用,小女晚上用。每次上锁太麻烦了,有没有更简单的办法呢?

小南和小女商量了一下,约定不锁门了,而是谁用房间,谁把自己的书包挂在门口,但他们的书包样式都一样,因此每次进门前得翻翻书包,看课本是谁的,如果是自己的,那么就可以进门,这样省的上锁解锁了。万一书包不是自己的,那么就在门外等,并通知对方下次用锁门的方式。

后来,小女回老家了,很长一段时间都不会用这个房间。小南每次还是挂书包,翻书包,虽然比锁门省事了,但仍然觉得麻烦。

于是,小南干脆在门上刻上了自己的名字:【小南专属房间,其它人勿用】,下次来用房间时,只要名字还在,那么说明没人打扰,还是可以安全地使用房间。如果这期间有其它人要用这个房间,那么由使用者将小南刻的名字擦掉,升级为挂书包的方式。

同学们都放假回老家了,小南就膨胀了,在 20 个房间刻上了自己的名字,想进哪个进哪个。后来他自己放假回老家了,这时小女回来了(她也要用这些房间),结果就是得一个个地擦掉小南刻的名字,升级为挂书包的方式。老王觉得这成本有点高,提出了一种批量重刻名的方法,他让小女不用挂书包了,可以直接在门上刻上自己的名字

后来,刻名的现象越来越频繁,老王受不了了:算了,这些房间都不能刻名了,只能挂书包----设置该类不可偏向

节码指令中有所体现

2、synchronized 原理进阶

2.1 轻量级锁

轻量级锁的使用场景:如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是没有竞争),那么可以使用轻量级锁来优化。

如果有竞争,轻量级锁会升级为重量级锁。

轻量级锁对使用者是透明的,即语法仍然是 synchronized

假设有两个方法同步块,利用同一个对象加锁

static final Object obj = new Object();
public static void method1() {
   synchronized( obj ) {
       // 同步块 A
       method2();
  }
}
public static void method2() {
   synchronized( obj ) {
       // 同步块 B
  }
}
  • 创建锁记录(Lock Record)对象,每个线程都的栈帧都会包含一个锁记录的结构,内部可以存储锁定对象的 Mark Word

  • 让锁记录中 Object reference 指向锁对象,并尝试用 cas(compare and swap,原子性) 替换 Object 的 Mark Word,将 Mark Word 的值存入锁记录

  • 如果 cas(compare and swap,原子性) 替换成功,对象头中存储了锁记录地址和状态 00,表示由该线程给对象加锁,这时图示如下

  • 如果 cas(compare and swap,原子性) 失败,有两种情况

    • 如果是其它线程已经持有了该 Object 的轻量级锁,这时表明有竞争,进入锁膨胀过程

    • 如果是自己执行了 synchronized 锁重入,那么再添加一条 Lock Record 作为重入的计数,如示例代码

  • 当退出 synchronized 代码块(解锁时)如果有取值为 null 的锁记录,表示有重入,这时重置锁记录,表示重入计数减一(锁重入的数量)

  • 当退出 synchronized 代码块(解锁时)锁记录的值不为 null,这时使用 cas(compare and swap,原子性) 将 Mark Word 的值恢复给对象头

    • 成功,则解锁成功

    • 失败,说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程

2.2 锁膨胀

如果在尝试加轻量级锁的过程中,CAS 操作无法成功,这时一种情况就是有其它线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。

static Object obj = new Object();
public static void method1() {
   synchronized( obj ) {
       // 同步块
  }
}
  • 当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁

  • 这时 Thread-1 加轻量级锁失败,进入锁膨胀流程

    • 即为 Object 对象申请 Monitor 锁,让 Object 指向重量级锁地址

    • 然后自己进入 Monitor 的 EntryList BLOCKED

  • 当 Thread-0 退出同步块解锁时,使用 cas 将 Mark Word 的值恢复给对象头,失败。这时会进入重量级解锁流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程

2.3 自旋优化

重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞。

自旋重试成功的情况

线程 1 (core 1 上) 对象 Mark 线程 2 (core 2 上)
- 10(重量锁) -
访问同步块,获取 monitor 10(重量锁)重量锁指针 -
成功(加锁) 10(重量锁)重量锁指针 -
执行同步块 10(重量锁)重量锁指针 -
执行同步块 10(重量锁)重量锁指针 访问同步块,获取 monitor
执行同步块 10(重量锁)重量锁指针 自旋重试
执行完毕 10(重量锁)重量锁指针 自旋重试
成功(解锁) 01(无锁) 自旋重试
- 10(重量锁)重量锁指针 成功(加锁)
- 10(重量锁)重量锁指针 执行同步块
- ... ...

线程2自旋重试3次成功加锁,这样就不会陷入阻塞。

自旋重试失败的情况

线程 1(core 1 上) 对象 Mark 线程 2(core 2 上)
- 10(重量锁) -
访问同步块,获取 monitor 10(重量锁)重量锁指针 -
成功(加锁) 10(重量锁)重量锁指针 -
执行同步块 10(重量锁)重量锁指针 -
执行同步块 10(重量锁)重量锁指针 访问同步块,获取 monitor
执行同步块 10(重量锁)重量锁指针 自旋重试
执行同步块 10(重量锁)重量锁指针 自旋重试
执行同步块 10(重量锁)重量锁指针 自旋重试
执行同步块 10(重量锁)重量锁指针 阻塞
- ... ...
  • 线程2一直处于自旋,最后处于阻塞状态。

  • 自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。

  • 在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。

  • Java 7 之后不能控制是否开启自旋功能

2.4 偏向锁

轻量级锁在没有竞争时(就自己这个线程),每次锁重入时仍然需要执行 CAS 操作。

Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有

例如:

static final Object obj = new Object();
public static void m1() {
   synchronized( obj ) {
       // 同步块 A
       m2();
  }
}
public static void m2() {
   synchronized( obj ) {
       // 同步块 B
       m3();
  }
}
public static void m3() {
   synchronized( obj ) {
       // 同步块 C
  }
}

2.4.1 偏向状态

回忆一下对象头格式

|--------------------------------------------------------------------|--------------------|
|                        Mark Word (64 bits)                         |       State        |
|--------------------------------------------------------------------|--------------------|
| unused:25 | hashcode:31 | unused:1 | age:4 | biased_lock:0 | 01    |       Normal       |  // 正常
|--------------------------------------------------------------------|--------------------|  // 偏向锁
| thread:54 | epoch:2     | unused:1 | age:4 | biased_lock:1 | 01    |       Biased       |
|--------------------------------------------------------------------|--------------------|
|             ptr_to_lock_record:62                          | 00    | Lightweight Locked |  // 轻量级
|--------------------------------------------------------------------|--------------------|  // 重量级
|             ptr_to_heavyweight_monitor:62                  | 10    | Heavyweight Locked |
|--------------------------------------------------------------------|--------------------|
|                                                            | 11    |    Marked for GC   |
|--------------------------------------------------------------------|--------------------|

一个对象创建时:

  • 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的 thread、epoch、age 都为 0

  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,可以sleep 4s后查看,如果想避免延迟,可以加 VM 参数 -XX:BiasedLockingStartupDelay=0 来禁用延迟

  • 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、age 都为 0,第一次用到 hashcode 时才会赋值

1) 测试延迟特性
2) 测试偏向锁
class Dog {}

利用 jol 第三方工具来查看对象头信息

pom文件

        <dependency>
           <groupId>org.openjdk.jol</groupId>
           <artifactId>jol-core</artifactId>
           <version>0.10</version>
       </dependency>

代码(注意这一小节的代码了解一下即可,在本机是运行不成功的,注意看输出就行了

// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0
public static void main(String[] args) throws IOException {
   Dog d = new Dog();
   ClassLayout classLayout = ClassLayout.parseInstance(d);

   new Thread(() -> {
       log.debug("synchronized 前");
       System.out.println(classLayout.toPrintableSimple(true));
       synchronized (d) {
           log.debug("synchronized 中");
           System.out.println(classLayout.toPrintableSimple(true));
      }
       log.debug("synchronized 后");
       System.out.println(classLayout.toPrintableSimple(true));
  }, "t1").start();

}

输出

11:08:58.117 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101       //VM 参数 `-XX:BiasedLockingStartupDelay=0`后
11:08:58.121 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101         // 与上面输出的区别,根据对象头格式查看
11:08:58.121 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101         // 处于偏向锁,线程id不变,除非有新的竞争

注意

处于偏向锁的对象解锁后,线程 id 仍存储于对象头中

3)测试禁用

在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁

输出

11:13:10.018 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001     // 三条日志后三位均不是101
11:13:10.021 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000     // 处于轻量级锁
11:13:10.021 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001     // 恢复成正常状态

4) 测试 hashCode,添加VM 参数 -XX:BiasedLockingStartupDelay=0 来禁用延迟

  • 正常状态对象一开始是没有 hashCode 的,第一次调用才生成

  • 调用 hashCode 会导致偏向锁被禁用。因为处于偏向锁状态的话已经存储线程id,再去存储hashcode,空间不够,是存储不下的。所以这时候的状态会被改为正常状态。另外轻量级锁的hashcode存储在栈帧中的锁记录中,重量级锁的hashcode存储在monitor对象中,解锁时会还原。

2.4.2 撤销 - 调用对象 hashCode

调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被撤销

  • 轻量级锁会在锁记录中记录 hashCode

  • 重量级锁会在 Monitor 中记录 hashCode

在调用 hashCode 后使用偏向锁,记得去掉 -XX:-UseBiasedLocking

输出

11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015
11:22:10.391 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001
11:22:10.393 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000
11:22:10.393 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001

2.4.3 撤销 - 其它线程使用对象

当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁

private static void test2() throws InterruptedException {

   Dog d = new Dog();
   Thread t1 = new Thread(() -> {
       synchronized (d) {
           log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
      }
       // 锁住当前类对象
       synchronized (TestBiased.class) {
           TestBiased.class.notify();
      }
       // 如果不用 wait/notify 使用 join 必须打开下面的注释
       // 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
       /*try {
           System.in.read();
       } catch (IOException e) {
           e.printStackTrace();
       }*/
  }, "t1");
   t1.start();


   Thread t2 = new Thread(() -> {
       // 锁住当前类对象
       synchronized (TestBiased.class) {
           try {
               TestBiased.class.wait(); // 等待t1线程
          } catch (InterruptedException e) {
               e.printStackTrace();
          }
      }
       log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
       synchronized (d) {
           log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
      }
       log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
  }, "t2");
   t2.start();
}

输出

[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101  // 处于偏向锁
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 // t2线程还未加锁和t1状态保持一致
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000 // 处于轻量级锁
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 // 解锁后处于不可偏向

2.4.4 撤销 - 调用 wait/notify

这种情况下也会撤销偏向锁。因为wait/notify只有重量级锁才有。会将偏向锁或者轻量级锁升级为重量级锁

public static void main(String[] args) throws InterruptedException {
   Dog d = new Dog();

   Thread t1 = new Thread(() -> {
       log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
       synchronized (d) {
           log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
           try {
               d.wait();
          } catch (InterruptedException e) {
               e.printStackTrace();
          }
           log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
      }
  }, "t1");
   t1.start();

   new Thread(() -> {
       try {
           Thread.sleep(6000);
      } catch (InterruptedException e) {
           e.printStackTrace();
      }
       synchronized (d) {
           log.debug("notify");
           d.notify();
      }
  }, "t2").start();

}

输出

[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101  // 偏向锁
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101 // 加锁
[t2] - notify
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010 // 重量级锁

2.4.5 批量重偏向

如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象的 Thread ID

当撤销偏向锁阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程

private static void test3() throws InterruptedException {

   Vector<Dog> list = new Vector<>();
   Thread t1 = new Thread(() -> {
       for (int i = 0; i < 30; i++) {
           Dog d = new Dog();
           list.add(d);
           synchronized (d) {
               log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
          }
      }
       synchronized (list) {
           list.notify();
      }        
  }, "t1");
   t1.start();

   
   Thread t2 = new Thread(() -> {
       synchronized (list) {
           try {
               list.wait();
          } catch (InterruptedException e) {
               e.printStackTrace();
          }
      }
       log.debug("===============> ");
       for (int i = 0; i < 30; i++) {
           Dog d = list.get(i);
           log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
           synchronized (d) {
               log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
          }
           log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
      }
  }, "t2");
   t2.start();
}

输出

[t1] - 0    00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101  // 偏向锁
[t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - ===============>
[t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 // 偏向t1锁
[t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 // 撤销偏向锁,升级为轻量级锁
[t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 // 处于不可偏向锁,也就是正常状态
[t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 // 第20个对象开始,全部处于偏向t2的偏向锁
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 // 批量重偏向,后面所有都处于偏向t2的偏向锁
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101

2.4.6 批量撤销

当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的

这里就不打印日志了,可以自行思考

static Thread t1,t2,t3;
private static void test4() throws InterruptedException {
   Vector<Dog> list = new Vector<>();

   int loopNumber = 39;
   t1 = new Thread(() -> {
       for (int i = 0; i < loopNumber; i++) {
           Dog d = new Dog();
           list.add(d);
           synchronized (d) {
               log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
          }
      }
       LockSupport.unpark(t2);
  }, "t1");
   t1.start();

   t2 = new Thread(() -> {
       LockSupport.park();
       log.debug("===============> ");
       for (int i = 0; i < loopNumber; i++) {
           Dog d = list.get(i);
           log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
           synchronized (d) {
               log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
          }
           log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
      }
       LockSupport.unpark(t3);
  }, "t2");
   t2.start();

   t3 = new Thread(() -> {
       LockSupport.park();
       log.debug("===============> ");
       for (int i = 0; i < loopNumber; i++) {
           Dog d = list.get(i);
           log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
           synchronized (d) {
               log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
          }
           log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
      }
  }, "t3");
   t3.start();

   t3.join();
   log.debug(ClassLayout.parseInstance(new Dog()).toPrintableSimple(true));
}

参考资料

https://github.com/farmerjohngit/myblog/issues/12

https://www.cnblogs.com/LemonFive/p/11246086.html

https://www.cnblogs.com/LemonFive/p/11248248.html

偏向锁论文

2.5 锁消除

锁消除

@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations=3)
@Measurement(iterations=5)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
   static int x = 0;
   @Benchmark
   public void a() throws Exception {
       x++;
  }
   @Benchmark
   public void b() throws Exception {
       Object o = new Object();
       synchronized (o) {
           x++;
      }
  }
}

java -jar benchmarks.jar

Benchmark            Mode  Samples  Score  Score error  Units
c.i.MyBenchmark.a   avgt       5 1.542       0.056 ns/op
c.i.MyBenchmark.b   avgt       5 1.518       0.091 ns/op

b是有一个加锁的操作,那为什么a耗时与b耗时几乎别区别呢?是因为Java中有一个JIT(即时编译器),会对于反复执行的代码进行优化,b中o对象根本不会被共享,所以b中的synchronized是没有任何意义的,所以Java就把锁给消除了。这也是存在一个开关的,这个开关是默认开启的,下面演示下把这个开关关闭掉。

java -XX:-EliminateLocks -jar benchmarks.jar

Benchmark            Mode  Samples   Score  Score error  Units
c.i.MyBenchmark.a   avgt       5   1.507       0.108 ns/op
c.i.MyBenchmark.b   avgt       5 16.976       1.572 ns/op

可以看到耗时有明显差距了。

锁粗化

对相同对象多次加锁,导致线程发生多次重入,可以使用锁粗化方式来优化,这不同于之前的细分锁的粒度。

Java并发(二十)----synchronized原理进阶的更多相关文章

  1. Java并发编程:Synchronized及其实现原理

    Java并发编程系列: Java 并发编程:核心理论 Java并发编程:Synchronized及其实现原理 Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) Java 并发编程 ...

  2. 【转】Java并发编程:Synchronized及其实现原理

    一.Synchronized的基本使用 Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法.Synchronized的作用主要有三个:(1)确保线程互斥的访问同步 ...

  3. Java并发编程:Synchronized底层优化(偏向锁、轻量级锁)

    Java并发编程系列: Java 并发编程:核心理论 Java并发编程:Synchronized及其实现原理 Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) Java 并发编程 ...

  4. Java并发编程:synchronized

    Java并发编程:synchronized 虽然多线程编程极大地提高了效率,但是也会带来一定的隐患.比如说两个线程同时往一个数据库表中插入不重复的数据,就可能会导致数据库中插入了相同的数据.今天我们就 ...

  5. 【转】Java并发编程:synchronized

    一.什么时候会出现线程安全问题? 在单线程中不会出现线程安全问题,而在多线程编程中,有可能会出现同时访问同一个资源的情况,这种资源可以是各种类型的资源:一个变量.一个对象.一个文件.一个数据库表等,而 ...

  6. 4、Java并发编程:synchronized

    Java并发编程:synchronized 虽然多线程编程极大地提高了效率,但是也会带来一定的隐患.比如说两个线程同时往一个数据库表中插入不重复的数据,就可能会导致数据库中插入了相同的数据.今天我们就 ...

  7. java并发中的Synchronized关键词

    文章目录 为什么要同步 Synchronized关键词 Synchronized Instance Methods Synchronized Static Methods Synchronized B ...

  8. Java并发(十九):final实现原理

    final在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量. 一旦你将引用声明作final,你将不能改变这个引用了,编译器会检查代码,如果你试图将变量再次初始化的话,编译器会报编 ...

  9. 【死磕Java并发】-----深入分析synchronized的实现原理

    记得刚刚開始学习Java的时候.一遇到多线程情况就是synchronized.相对于当时的我们来说synchronized是这么的奇妙而又强大,那个时候我们赋予它一个名字"同步". ...

  10. Java并发(十二):CAS Unsafe Atomic

    一.Unsafe Java无法直接访问底层操作系统,而是通过本地(native)方法来访问.不过尽管如此,JVM还是开了一个后门,JDK中有一个类Unsafe,它提供了硬件级别的原子操作. 这个类尽管 ...

随机推荐

  1. codeforces600E. Lomsat gelral(dsu on tree笔记)

    知识前驱:树链剖分 codeforces600E. Lomsat gelral 题意:给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 分析:递归求解,对于一棵树,求出他的所有子树的颜色编号 ...

  2. 解读Redis常见命令

    Redis数据结构介绍 Redis是一个key-value的数据库,key一般是String类型,不过value的类型多种多样: 贴心小建议:命令不要死记,学会查询就好啦 Redis为了方便我们学习, ...

  3. dedebiz友情链接样式修改

    文件位置 /system/taglib/flink.lib.php 45行位置 根据自己需求修改就行

  4. CF 下分记录

    7.27 edu152 \(+173=2048\) B 没细看数据范围 WA 了一次 D 没判 \(i-1=0\) WA 了一次 E. Max to the Right of Min 考虑增大右端点, ...

  5. Oracle:字符串的拼接、截取、查找、替换

    一.拼接:1.使用"||"来拼接字符串: select '拼接'||'字符串' as Str from dual; 2.使用concat(param1,param2)函数实现: s ...

  6. CF755C

    题目简化和分析: 这题不用说怎么分析了吧,这一看就是个并查集求连通分量个数的经典模板. 我们需要将 \(i\) 和 \(p_i\) 进行合并. 遍历每个 \(i\) 与 \(i+1\) 是否属于同一个 ...

  7. 删除小程序scroll-view的滚动条

    小程序scroll-view滚动条很丑,想隐藏? 在有scroll-view滚动条页面的wxss里添加: ::-webkit-scrollbar { display: none; width: 0; ...

  8. APP攻防--安卓逆向&数据修改&逻辑修改&视图修改

    APP攻防--安卓逆向&数据修改&逻辑修改&视图修改 @ 目录 APP攻防--安卓逆向&数据修改&逻辑修改&视图修改 工具集 apk目录意义 逆向数据修 ...

  9. t分布及t分布表

    http://baike.baidu.com/view/1419652.htm   下表列出了自由度为1-30以及80.100.120等t-分布的单侧和双侧区间值.例如,当样本数量n=5时,则自由度v ...

  10. Jail 【Python沙箱逃逸问题合集】

    借助NSS平台题目,以2022年HNCTF为例展开分析 背景: 由于目前很多赛事有时候会出现一些pyjail的题目,因此在这里总结一下以便以后遇见可以轻松应对. 注:由于Python3中的unicod ...