[ABC263F] Tournament
Problem Statement
$2^N$ people, numbered $1$ to $2^N$, will participate in a rock-paper-scissors tournament.
The tournament proceeds as follows:
- The participants are arranged in a row in the order Person $1$, Person $2$, $\ldots$, Person $2^N$ from left to right.
- Let $2M$ be the current length of the row. For each $i\ (1\leq i \leq M)$, the $(2i-1)$-th and $(2i)$-th persons from the left play a game against each other. Then, the $M$ losers are removed from the row. This process is repeated $N$ times.
Here, if Person $i$ wins exactly $j$ games, they receive $C_{i,j}$ yen (Japanese currency). A person winning zero games receives nothing. Find the maximum possible total amount of money received by the $2^N$ people if the results of all games can be manipulated freely.
Constraints
- $1 \leq N \leq 16$
- $1 \leq C_{i,j} \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$
$C_{1,1}$ $C_{1,2}$ $\ldots$ $C_{1,N}$
$C_{2,1}$ $C_{2,2}$ $\ldots$ $C_{2,N}$
$\vdots$
$C_{2^N,1}$ $C_{2^N,2}$ $\ldots$ $C_{2^N,N}$
Output
Print the answer.
Sample Input 1
2
2 5
6 5
2 1
7 9
Sample Output 1
15
The initial row of the people is $(1,2,3,4)$.
If Person $2$ wins the game against Person $1$, and Person $4$ wins the game against Person $3$, the row becomes $(2,4)$.
Then, if Person $4$ wins the game against Person $2$, the row becomes $(4)$, and the tournament ends.
Here, Person $2$ wins exactly $1$ game, and Person $4$ wins exactly $2$ games, so they receive $0+6+0+9=15$ yen in total, which is the maximum possible sum.
Sample Input 2
3
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
这种比赛,我们可以以满二叉树的方式表现比赛的过程。以叶子节点作为每个参赛者。然后对于一棵子树,他的根节点代表整颗子树赛后的获胜者。
我们不能知道这棵树每个节点是哪位参赛者,但我们可以通过这棵树的形式来做 dp。
满二叉树我们可以用线段树类似的方式给每个节点编号。易得,如果一个叶子节点编号为 \(x\),那么他代表第 \(x-2^n\) 号参赛者。一个参赛者赢得场数要从他输的那场的前面算。
定义 \(dp_{i,j}\) 为现在到了第 \(i\) 号节点,这名参赛者参加了 \(i\) 次比赛。转移时我们枚举是左子树的参赛者赢了还是右子树的参赛者赢了就好了。加个记忆化。
想到了代码非常好写。但之前完全没往这棵树上想过。
#include<bits/stdc++.h>
using namespace std;
const int N=17;
int n,c[1<<N][N];
long long dp[1<<N][N];
long long dfs(int x,int y)
{
if(x>=(1<<n))
return c[x^(1<<n)][y];
if(~dp[x][y])
return dp[x][y];
return dp[x][y]=max(dfs(x<<1,y+1)+dfs(x<<1|1,0),dfs(x<<1|1,y+1)+dfs(x<<1,0));
}
int main()
{
memset(dp,-1,sizeof(dp));
scanf("%d",&n);
for(int i=0;i<(1<<n);i++)
for(int j=1;j<=n;j++)
scanf("%d",c[i]+j);
printf("%lld",dfs(1,0));
return 0;
}
[ABC263F] Tournament的更多相关文章
- Codeforces CF#628 Education 8 A. Tennis Tournament
A. Tennis Tournament time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Rock-Paper-Scissors Tournament[HDU1148]
Rock-Paper-Scissors TournamentTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- CF 628A --- Tennis Tournament --- 水题
CF 628A 题目大意:给定n,b,p,其中n为进行比赛的人数,b为每场进行比赛的每一位运动员需要的水的数量, p为整个赛程提供给每位运动员的毛巾数量, 每次在剩余的n人数中,挑选2^k=m(m & ...
- ural 1218. Episode N-th: The Jedi Tournament
1218. Episode N-th: The Jedi Tournament Time limit: 1.0 secondMemory limit: 64 MB Decided several Je ...
- URAL 1218 Episode N-th: The Jedi Tournament(强连通分量)(缩点)
Episode N-th: The Jedi Tournament Time limit: 1.0 secondMemory limit: 64 MB Decided several Jedi Kni ...
- Educational Codeforces Round 13 E. Another Sith Tournament 概率dp+状压
题目链接: 题目 E. Another Sith Tournament time limit per test2.5 seconds memory limit per test256 megabyte ...
- CodeForce 356A Knight Tournament(set应用)
Knight Tournament time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- 遗传算法selection总结-[Fitness, Tournament, Rank Selection]
假设个体(individual)用\(h_i\)表示,该个体的适应度(fitness)为\(Fitness(h_i)\),被选择的概率为\(P(h_i)\). 另外假设种群(population)的个 ...
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- 【CF878C】Tournament set+并查集+链表
[CF878C]Tournament 题意:有k个项目,n个运动员,第i个运动员的第j个项目的能力值为aij.一场比赛可以通过如下方式进行: 每次选出2个人和一个项目,该项目能力值高者获胜,败者被淘汰 ...
随机推荐
- [ABC150E] Change a Little Bit
2023-03-10 题目 题目传送门 翻译 翻译 难度&重要性(1~10):7 题目来源 AtCoder 题目算法 数学,贪心 解题思路 显然 \(C_i\) 越小的位越早被修改越好.所以我 ...
- 给DataTable添加额外字段
//dt为DataTable dt.Columns.Add("字段名");//创建字段 //给新增字段赋值 foreach(DataRow item in dt.Rows) { i ...
- Redis沙盒逃逸(CVE-2022-0543)漏洞复现
0x01 概述 Redis 是著名的开源 Key-Value 数据库,其具备在沙箱中执行 Lua 脚本的能力.Debian 以及 Ubuntu 发行版的源在打包 Redis 时,在 Lua 沙箱中遗留 ...
- Solution Set -「CF 1539」
我是傻逼. 「CF 1539A」Contest Start Link. 答案是 \(\sum_{i=1}^{n-1}\min\{i,\lfloor\frac{t}{x}\rfloor\}\),等差数列 ...
- Solution Set -「CF 1534」
这 1+2? 「CF1534 A」Colour the Flag Link. 把 W / R 拉出来广搜,注意判断全空的情况. #include <bits/stdc++.h> using ...
- 【matplotlib基础】--3D图形
matplotlib 在1.0版本之前其实是不支持3D图形绘制的. 后来的版本中,matplotlib加入了3D图形的支持,不仅仅是为了使数据的展示更加生动和有趣.更重要的是,由于多了一个维度,扩展了 ...
- Springboot集成Netty实现TCP通讯
Netty测试客户端 package com.coremain; import com.coremain.handler.ServerListenerHandler; import io.netty. ...
- 爬虫系列——Scrapy
文章目录 一 介绍 二 安装 三 命令行工具 四 项目结构以及爬虫应用简介 五 Spiders 六 Selectors 七 Items 八 Item Pipeline 九 Dowloader Midd ...
- Welcome to the Android Open Source Project!
Android is an open-source software stack for a wide range of mobile devices and a corresponding open ...
- ContextWrapper
/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Versi ...