CF653F Paper task

给定一个长度为 \(n\) 和括号串,求本质不同的合法括号串个数。\(n\le 5\times 10^5\)。

考虑如果不是求本质不同,可以想到 DP。

设 \(f_{i}\) 表示以 \(i\) 结尾的括号串数,容易发现 \(f_{i}=f_{t_{i}-1}+1\),其中 \(t_{i}\) 表示与 \(i\) 匹配的左括号位置。用栈模拟即可做到 \(O(n)\)。我们考虑把这个转移的边建出来,然后发现这是一个森林的结构。

再考虑去重,利用 SA,对于每个数的 \(f_{i}\),我们只取长度严格大于 \(height_{i}\) 的串,这对于森林中就是到根到该点路径的一段前缀,倍增优化跳的过程即可做到 \(O(n\log n)\)。

#include<bits/stdc++.h>
using namespace std; typedef long long ll; const ll maxn=5e5+5;
char s[maxn]; ll n, m=100;
ll num[maxn], rk[maxn], sa[maxn], tp[maxn], height[maxn], g[maxn]; void basesort(){
memset(num,0,sizeof(num));
for(ll i=1;i<=n;i++) num[rk[i]]++;
for(ll i=1;i<=m;i++) num[i]+= num[i-1];
for(ll i=n;i>=1;i--) sa[num[rk[tp[i]]]--]=tp[i];
return ;
} void SuffixSort() {
m=100s;
for(ll i=1;i<=n;i++) rk[i]=s[i]-'('+1,tp[i]=i;
basesort();
for(ll w=1,p=0;p<n;m=p,w<<=1) {
p=0;
for(ll i=1;i<=w;i++) tp[++p]=n-w+i;
for(ll i=1;i<=n;i++) if(sa[i]>w) tp[++p]=sa[i]-w;
basesort();
for(ll i=1;i<=n;++i) swap(tp[i],rk[i]);
rk[sa[1]]=1;
p=1;
for(ll i=2;i<=n;i++) {
if(tp[sa[i-1]]==tp[sa[i]]&&tp[sa[i-1]+w]==tp[sa[i]+w]) rk[sa[i]]=p;
else rk[sa[i]]=++p;
}
}
return ;
} ll f[maxn][20]; int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
cin>>n;
for(ll i=1;i<=n;i++) cin>>s[i];
for(ll i=1;i<=n+1;i++) {
for(ll j=0;j<20;j++) f[i][j]=n+1;
}
vector<ll> vec;
for(ll i=n;i>=1;i--) {
if(s[i]==')') vec.push_back(i);
else {
if(vec.size()&&s[vec.back()]==')') {
f[i][0]=vec.back()+1;
g[i]=g[vec.back()+1]+1;
for(ll j=1;j<20;j++) f[i][j]=f[f[i][j-1]][j-1];
vec.pop_back();
}else vec.push_back(i);
}
}
SuffixSort();
ll k=0;
for(ll i=1;i<=n;i++) {
if(k) --k;
ll j=sa[rk[i]-1];
while(i+k<=n&&s[i+k]==s[j+k]) ++k;
height[rk[i]]=k;
}
ll ans=0;
for(ll i=1;i<=n;i++) {
ll x=sa[i];
for(ll j=19;j>=0;j--) if(f[x][j]-sa[i]<=height[i]) x=f[x][j];
ans+=g[x];
}
cout<<ans<<'\n';
return 0;
}

题解 CF653F Paper task的更多相关文章

  1. [CF653F] Paper task - 后缀数组,线段树,vector

    [CF653F] Paper task Description 给定一个括号序列,统计合法的本质不同子串的个数. Solution 很容易想到,只要在传统统计本质不同子串的基础上修改一下即可. 考虑经 ...

  2. CF653F Paper task

    题目链接:洛谷 首先我们不考虑本质不同这个限制. 既然不能直接用栈乱搞,我们就可以用一个前缀和的套路了. 我们将(设为1,将)设为-1,记前缀和为$s_i$,则$[i,j]$这一段是回文子串当且仅当 ...

  3. Codeforces 653F Paper task SA

    Paper task 如果不要求本质不同直接st表二分找出最右端, 然后计数就好了. 要求本质不同, 先求个sa, 然后用lcp求本质不同就好啦. #include<bits/stdc++.h& ...

  4. 题解-Sakuya's task

    题面 Sakuya's task \[\left(\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\right)\bmod 10^9+7 \] 数据范围:\(1\ ...

  5. CF IndiaHacks 2016 F Paper task 后缀数组

    题目链接:http://codeforces.com/problemset/problem/653/F 大意是给出一个只包含'('和')'的括号串,求有多少不同的子串是合法的括号串 解法:对于每一个后 ...

  6. 3.26-3.31【cf补题+其他】

      计蒜客)翻硬币 //暴力匹配 #include<cstdio> #include<cstring> #define CLR(a, b) memset((a), (b), s ...

  7. HDU-3974 Assign the task题解报告【dfs序+线段树】

    There is a company that has N employees(numbered from 1 to N),every employee in the company has a im ...

  8. 【题解】 CF11D A Simple Task

    [题解] CF11D A Simple Task 传送门 \(n \le 20\) 考虑状态压缩\(dp\). 考虑状态,\(dp(i,j,O)\)表示从\(i\)到\(j\)经过点集\(O\)的路径 ...

  9. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

  10. [CF11D]A Simple Task 题解

    题解 我们从最简单的思路开始考虑,首先看到题目发现\(n\)非常小,于是很容易想到状态压缩. 我们考虑比较直觉的状态,f[i][j][k]表示以i为起点,当前在j,之前去过的点状态为k的简单环的方案数 ...

随机推荐

  1. mysql笔记第一天: 介绍和MySQL编译安装

    一.DBA的工作内容: ![](371eaced-e10b-46d9-89e2-f63f15503bb6_files/9edcd22a-ef2d-4c3e-8474-3049255610db.jpg) ...

  2. 『手撕Vue-CLI』下载指定模板

    开篇 经上篇文章的介绍,实现了获取下载目录地址,接下来实现下载指定模板的功能. 背景 通过很多章节过后,已经可以拿到模板名称,模板版本号,下载目录地址,这些信息都是为了下载指定模板做准备的. 实现 如 ...

  3. mobile select 移动端下拉框

    官方链接 原生 js 移动端选择控件,不依赖任何库 可传入普通数组或者 json 数组 可根据传入的参数长度,自动渲染出对应的列数,支持单项到多项选择 自动识别是否级联 选择成功后,提供自定义回调函数 ...

  4. 在webpack中运行vue

    网址:https://vue-loader.vuejs.org/zh/ Vue Loader 是一个 webpack 的 loader,它允许你以一种名为单文件组件的格式撰写 Vue 组件 安装loa ...

  5. ubuntu server 22.04 安装docker

    ubuntu server 22.04 安装docker 官方安装文档: https://docs.docker.com/engine/install/ubuntu/ 1.更新软件列表: sudo a ...

  6. 三月二十一日 安卓app个人作业开发

    已经完成了 登录 和 注册逻辑 目前还有 提交打卡记录 的 开始时间 和 结束时间没有弄好 还有个人打卡记录的显示问题 并且我希望增加 修改个人密码 显示个人信息 退出登录 返回页面 删除打卡记录 的 ...

  7. 「C++」简单模拟

    这是一个公式: \[F_n=\dfrac{\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{ ...

  8. 嵌入式 Arduino 期末复习

    1 基础知识 1.1 概述 对嵌入式的定义 国内定义:以应用为中心,以计算机技术为基础,软件硬件可裁剪,且适应系统对功能,可靠性,成本,体积,功耗严格要求的专用计算机系统. IEEE定义:用于控制,监 ...

  9. spring与设计模式之二单例模式

    网络上都说ApplicationContext是单例,但看了原始代码,我认为应该是一个错误的表达. 我们来看Spring6.x中用springboot创建一个程序的时候默认的applicationCo ...

  10. Android自动化无障碍服务开源库-Assists v3.0.0

    Assists v3.0.0 Android无障碍服务(AccessibilityService)开发框架,快速开发复杂自动化任务.远程协助.监听等 Android无障碍服务能做什么 利用Androi ...