An Easy Problem for Elfness

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1235    Accepted Submission(s): 257

Problem Description
Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge water transmission network that covers the whole southwest China. To save the fund, there will be exactly one path between two cities.

Since the water every city provides and costs every day is different, he needs to transfer water from one particular city to another as much as possible in the next few days. However the pipes which connect the cities have a limited capacity for transmission. (Which means the water that transfer though the pipe should not exceed a particular amount) So he has to know the maximum water that the network can transfer in the next few days.

He thought it's a maximum flow problem, so he invites an expert in this field, Elfness (Also known as Xinhang senior sister) to help him figure it out.

Unlike Pfctgeorge, Elfness quickly finds that this problem is much easier than a normal maximum flow problem, and is willing to help Pfctgeorge.

"Oh well, this problem is not a tough one. We can ..."

Abruptly, Pfctgeorge's iPhone rings, and ... the ringtone is Mo Di Da Biao Ke.

"You can make that? Excellent! "Pfctgeorge hangs up his iPhone, and turns to Elfness.

"Here's good news for you. A construction team told me that every pipe's capacity can be extended for one day. And the price for extending one unit capacity varies from day to day. "

"Eh well, that's a good news for you, not me. Now it's rather like a minimum cost ow problem, right? But it's still not a tough one, let me have a think. "

After a few seconds' thought, Elfness comes up with a simple solution.

"Ok, we can solve it like... "

Abruptly, here comes Mo Di Da Biao Ke again.

"Seriously? You can build new pipes? Thank you very much. "

"OK, my dear Elfness, we got more good news. Another construction team said they can build one or more pipes between any two cities and their pipes are exactly like the original ones except that they only work for one day. And the capacity of the new pipes is only one, but they can be extended, too. Of course, their price to build a single pipe also varies in days. "

"You mean the new pipes can be extended too? Wow, things are getting more interesting. Give me a few minutes. "

Elfness takes out his new ultrabook which is awarded in VK cup and does some basic calculation.

"I get it. The problem can be solved ..."

Mo Di Da Biao Ke again, but this time it's from Elfness's phone.

"As you see, I have to go out. But I know someone else who can also solve this; I'll recommend this guy for you. "

And of course, that poor guy is YOU. Help Pfctgeorge solve his problem, and then the favorability about you from Elfness will raise a lot.

 
Input
The first line has a number T (T <= 10) , indicating the number of test cases.

The first line of each test case is two integers N (1 <= N <= 100000) and M (1 <= M <= 100000), indicating the number of the city that the original network connects and the number of days when Pfctgeorge needs to know about the maximum water transmissions. Then next N - 1 lines each describe a pipe that connects two cities. The format will be like U, V , cap (1 <= U, V <= N and 0 <= cap < 10000), which means the ids of the two cities the pipe connects and the transmission limit of the pipe. As is said in description, the network that the cities and pipes form is a tree (an undirected acyclic graph).

Then next M lines of the test case describe the information about the next few days. The format is like S, T, K, A, B(0 <= K <= 2^31 - 1, 1 <= A, B <= 2^31 - 1). S means the source of the water while T means the sink. K means the total budget in the day. A means the cost for a construction team to build a new pipe and B means the cost for a construction team to extend the capacity of a pipe.

I am glad to list the information of building a new pipe and extending the capacity.

1. Pfctgeorge can build a new pipe between any two cities, no matter they have been directly connected or not. Pfctgeorge can build more than one new pipe between any two cities.
2. The capacity of the pipe that was newly built is one.
3. Pfctgeorge can extend the capacity of any existed pipe including the newly built one and the original one.
4. Each time you extend the capacity of one pipe, the capacity of that pipe increases one.
5. The cost of building a new pipe is A and the cost of extending a pipe is B.
6. You can take any constructions in any times and the only limit is to make sure the total costs not exceed the budget.
7. All the work that construction team does only lasts one single day.

 
Output
For every case, you should output "Case #t:" at first, without quotes. The t is the case number starting from 1.
Then for each day, output the maximum water Pfctgeorge can transfer from S and T with a budget of K.
 
Sample Input
2
5 1
1 2 2
1 3 5
2 4 1
4 5 2
1 5 3 3 2
5 5
1 2 10
2 3 2
3 4 7
2 5 7
1 5 0 1 3
1 3 0 2 3
1 5 3 2 3
1 2 7 3 1
1 3 2 3 1
 
Sample Output
Case #1:
2
Case #2:
7
2
8
17
4

Hint

In the first sample case, you can extend the capacity of the pipe which connects city2 and city4 by one, or just build a new pipe between city2 and city4.

/*
hdu4729 树链剖分+二分 problem:
给你n个点,然你求两个点之间的最大流.而且你有一定的钱,可以进行两种操作
1.在任意连个点之间建立一个单位1的流,费用A
2.将原先的流扩大1个单位,费用B solve:
在最初始的图上面u,v之间的流flow即u->v边上的最小值
①如果A<=B,那么我们可以直接在两个目标点u,v之间建边.所以答案为 flow+k/A
②如果A>B
可以先建一条边然后不停地扩展 (flow-A)/B+1
or不停地给最小的边扩展,使u->v的最小值变大. 可以二分找到这个值
最开始是二分(1,10000)结果超时QAQ. 后来发现可以先求出(flow-A)/B+1,那么二分的时候就是((flow-A)/B+1,10000) hhh-2016-08-18 11:39:23
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 200100;
const int inf = 0x3f3f3f3f;
int head[maxn],tot,pos,son[maxn];
int top[maxn],fp[maxn],fa[maxn],dep[maxn],num[maxn],p[maxn];
int val[maxn];
int n;
struct Edge
{
int to,next,w;
} edge[maxn<<1]; void ini()
{
tot = 0,pos = 1;
clr(head,-1),clr(son,-1);
// clr(val,0);
} void add_edge(int u,int v,int w)
{
edge[tot].w = w,edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void dfs1(int u,int pre,int d)
{
dep[u] = d;
fa[u] = pre,num[u] = 1;
// cout << "node:" << u<<endl;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
val[v] = edge[i].w;
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1)return ;
getpos(son[u],sp);
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} struct node
{
int l,r,mid;
ll Min;
} tree[maxn << 2];
void push_up(int i)
{
tree[i].Min = min(tree[lson].Min,tree[rson].Min);
}
void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].Min = inf;
tree[i].mid=(l+r) >>1;
if(l == r)
{
tree[i].Min = val[fp[l]];
// cout << fp[l] <<" " <<val[fp[l]]<<endl;
return;
}
build(lson,l,tree[i].mid);
build(rson,tree[i].mid+1,r);
push_up(i);
} void update(int i,int k,int val)
{
if(tree[i].l == k && tree[i].r == k)
{
tree[i].Min = val;
return;
}
int mid = tree[i].mid;
if(k <= mid) update(lson,k,val);
else update(rson,mid,val);
push_up(i);
}
ll query(int i,int l,int r)
{
// cout <<"l:"<< l <<" r:"<<r <<" min:"<< tree[i].Min<<endl;
if(tree[i].l >= l && tree[i].r <= r)
return tree[i].Min;
int mid = tree[i].mid;
if(r <= mid)
return query(lson,l,r);
else if(l > mid)
return query(rson,l,r);
else
{
return min(query(lson,l,mid),query(rson,mid+1,r));
}
}
ll find_flow(int u,int v)
{
int f1 = top[u],f2 = top[v];
ll tmp = inf;
// cout <<f1 <<" " <<f2 <<endl;
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
tmp = min(tmp,query(1,p[f1],p[u]));
u = fa[f1],f1 = top[u];
}
if(u == v) return tmp;
if(dep[u] > dep[v]) swap(u,v);
// cout << son[u] << " " <<v <<endl;
return min(tmp,query(1,p[son[u]],p[v]));
}
int allnum = 0;
bool can_do(int i,int l,int r,int mid)
{
if(tree[i].l >= l && tree[i].r <= r && tree[i].Min >= mid)
{
return true;
}
if(tree[i].l == tree[i].r)
{
// cout << tree[i].Min <<" " <<mid<<endl;
if(tree[i].Min >= mid)
return true;
allnum -= (mid-tree[i].Min);
if(allnum>= 0) return true;
return false;
}
if(r <= tree[i].mid)
return can_do(lson,l,r,mid);
else if(l > tree[i].mid)
return can_do(rson,l,r,mid);
else
return can_do(lson,l,tree[i].mid,mid)&&can_do(rson,tree[i].mid+1,r,mid);
} bool find_flag(int u,int v,int mid)
{
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
if(!can_do(1,p[f1],p[u],mid))
return false;
u = fa[f1],f1 = top[u];
}
if(u == v) return true;
if(dep[u] > dep[v]) swap(u,v);
return can_do(1,p[son[u]],p[v],mid);
} int a[maxn]; int main()
{
// freopen("in.txt","r",stdin);
int T,cas = 1;
int x,y,k,a,b;
int m,u,v,w;
scanf("%d",&T);
while(T--)
{
ini();
scanf("%d%d",&n,&m);
// cout << n <<" " <<m <<endl;
for(int i =1; i < n; i++)
{
scanf("%d%d%d",&u,&v,&w);
add_edge(u,v,w);
add_edge(v,u,w);
}
dfs1(1,0,0);
getpos(1,1);
build(1,0,pos-1);
// char op[10];
printf("Case #%d:\n",cas++);
for(int i = 1;i <= m;i++)
{
scanf("%d%d%d%d%d",&x,&y,&k,&a,&b);
ll flow = find_flow(x,y);
// cout <<"flow:"<<flow <<endl;
if(k < min(a,b))
{
printf("%I64d\n",flow);
}
else if(a <= b)
{
printf("%I64d\n",flow+(ll)k/a);
}
else
{
ll ans = flow;
if(k > a)
ans += (k-a)/b+1;
int l = ans,r = 10000;
while(l <= r)
{
int mid = (l+r)>>1;
allnum = k/b;
if(find_flag(x,y,mid))
{
ans = mid,l = mid + 1;
}
else
r = mid - 1;
}
printf("%I64d\n",ans);
}
}
}
return 0;
}

  

hdu4729 树链剖分+二分的更多相关文章

  1. NOIP 2015 BZOJ 4326 运输计划 (树链剖分+二分)

    Description 公元 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n− 条双向航道,每条航道建立在两个星球之间,这 n− 条航道连通了 L 国的所有星球. 小 P 掌管一家物流公司, ...

  2. BZOJ 4551[Tjoi2016&Heoi2016]树(树链剖分+二分)

    Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记 ...

  3. BZOJ 4326 树链剖分+二分+差分+记忆化

    去年NOIP的时候我还不会树链剖分! 还是被UOJ 的数据卡了一组. 差分的思想还是很神啊! #include <iostream> #include <cstring> #i ...

  4. bzoj 4326: NOIP2015 运输计划【树链剖分+二分+树上差分】

    常数巨大,lg上开o2才能A 首先预处理出运输计划的长度len和lca,然后二分一个长度w,对于长度大于w的运输计划,在树上差分(d[u]+1,d[v]+1,d[lca]-2),然后dfs,找出所有覆 ...

  5. bzoj 4326: NOIP2015 运输计划(二分+树链剖分)

    传送门 题解: 树链剖分快速求解任意两点间的路径的权值和: 然后,二分答案: 此题的难点是如何快速求解重合路径? 差分数组可以否??? 在此之前先介绍一下相关变量: int fa[maxn]; int ...

  6. HDU 4729 An Easy Problem for Elfness(树链剖分边权+二分)

    题意 链接:https://cn.vjudge.net/problem/HDU-4729 给你n个点,然你求两个点s和t之间的最大流.而且你有一定的钱k,可以进行两种操作 1.在任意连个点之间建立一个 ...

  7. bzoj1146整体二分+树链剖分+树状数组

    其实也没啥好说的 用树状数组可以O(logn)的查询 套一层整体二分就可以做到O(nlngn) 最后用树链剖分让序列上树 #include<cstdio> #include<cstr ...

  8. BZOJ_4326_[NOIP2015]_运输计划_(二分+LCA_树链剖分/Tarjan+差分)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=4326 给出一棵带有边权的树,以及一系列任务,任务是从树上的u点走到v点,代价为u到v路径上的权 ...

  9. bzoj4326 树链剖分 + 线段树 // 二分 lca + 树上差分

    https://www.lydsy.com/JudgeOnline/problem.php?id=4326 题意:N个点的树上给M条树链,问去掉一条边的权值之后所有树链长度和的最大值最小是多少. 首先 ...

随机推荐

  1. Week03-面向对象入门

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 类 对象 封装 继承 覆盖 重载 构造函数 static public private toString f ...

  2. java封装的概念

    继承.封装.多态.抽象是面向对象编程的四大基本概念,其中封装尤为重要,因为从我们学习JAVA开始,就基本上接触了封装,因为JAVA中的所有程序都是写在类中的,类也能当做一种封装. 在面向对象中封装是指 ...

  3. iOS中滤镜种类及相关介绍

  4. EL表达式 与 servlvet3.0的新规范

    EL表达式 EL表达式 是一种简化的数据访问方式,是对jsp脚本的简化  . 如我们在一个页面中需要输出session的保存的一个值: <%  out.println(session.getAt ...

  5. CNN中的padding

    在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding="SAME& ...

  6. System.Reflection名称空间下的程序集类Assembly应用.

    利用反射中的程序集类(Assembly--抽象类)动态加载类库(.dll)或者可执行程序(.exe). 优点:①.可以消除if条件的逻辑判断.②.减少内存资源.③.有利于程序扩展. 缺点... 使用静 ...

  7. Python机器学习—导入各种数据的N种办法

    pandas 读取数据 一.导入一般的文件 1.read_csv(),用来读取CSV文件 官方文档是这么说的:Read CSV (comma-separated) file into DataFram ...

  8. 移动端300ms与点透总结

    300ms,主要发生在mobile 为啥会出现300ms延迟现象 浏览器想知道用户是否dobule tap(双击缩放) 下列情况不会出现300ms延迟 桌面浏览器 meta的viewport设置了us ...

  9. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

  10. kubernetes入门(07)kubernetes的核心概念(4)

    一.pod 二.Volume volume可以为容器提供持久化存储,比如 三.私有镜像 在使用私有镜像时,需要创建一个docker registry secret,并在容器中引用.创建docker r ...