hdu4729 树链剖分+二分
An Easy Problem for Elfness
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1235 Accepted Submission(s): 257
Since the water every city provides and costs every day is different, he needs to transfer water from one particular city to another as much as possible in the next few days. However the pipes which connect the cities have a limited capacity for transmission. (Which means the water that transfer though the pipe should not exceed a particular amount) So he has to know the maximum water that the network can transfer in the next few days.
He thought it's a maximum flow problem, so he invites an expert in this field, Elfness (Also known as Xinhang senior sister) to help him figure it out.
Unlike Pfctgeorge, Elfness quickly finds that this problem is much easier than a normal maximum flow problem, and is willing to help Pfctgeorge.
"Oh well, this problem is not a tough one. We can ..."
Abruptly, Pfctgeorge's iPhone rings, and ... the ringtone is Mo Di Da Biao Ke.
"You can make that? Excellent! "Pfctgeorge hangs up his iPhone, and turns to Elfness.
"Here's good news for you. A construction team told me that every pipe's capacity can be extended for one day. And the price for extending one unit capacity varies from day to day. "
"Eh well, that's a good news for you, not me. Now it's rather like a minimum cost ow problem, right? But it's still not a tough one, let me have a think. "
After a few seconds' thought, Elfness comes up with a simple solution.
"Ok, we can solve it like... "
Abruptly, here comes Mo Di Da Biao Ke again.
"Seriously? You can build new pipes? Thank you very much. "
"OK, my dear Elfness, we got more good news. Another construction team said they can build one or more pipes between any two cities and their pipes are exactly like the original ones except that they only work for one day. And the capacity of the new pipes is only one, but they can be extended, too. Of course, their price to build a single pipe also varies in days. "
"You mean the new pipes can be extended too? Wow, things are getting more interesting. Give me a few minutes. "
Elfness takes out his new ultrabook which is awarded in VK cup and does some basic calculation.
"I get it. The problem can be solved ..."
Mo Di Da Biao Ke again, but this time it's from Elfness's phone.
"As you see, I have to go out. But I know someone else who can also solve this; I'll recommend this guy for you. "
And of course, that poor guy is YOU. Help Pfctgeorge solve his problem, and then the favorability about you from Elfness will raise a lot.
The first line of each test case is two integers N (1 <= N <= 100000) and M (1 <= M <= 100000), indicating the number of the city that the original network connects and the number of days when Pfctgeorge needs to know about the maximum water transmissions. Then next N - 1 lines each describe a pipe that connects two cities. The format will be like U, V , cap (1 <= U, V <= N and 0 <= cap < 10000), which means the ids of the two cities the pipe connects and the transmission limit of the pipe. As is said in description, the network that the cities and pipes form is a tree (an undirected acyclic graph).
Then next M lines of the test case describe the information about the next few days. The format is like S, T, K, A, B(0 <= K <= 2^31 - 1, 1 <= A, B <= 2^31 - 1). S means the source of the water while T means the sink. K means the total budget in the day. A means the cost for a construction team to build a new pipe and B means the cost for a construction team to extend the capacity of a pipe.
I am glad to list the information of building a new pipe and extending the capacity.
1. Pfctgeorge can build a new pipe between any two cities, no matter they have been directly connected or not. Pfctgeorge can build more than one new pipe between any two cities.
2. The capacity of the pipe that was newly built is one.
3. Pfctgeorge can extend the capacity of any existed pipe including the newly built one and the original one.
4. Each time you extend the capacity of one pipe, the capacity of that pipe increases one.
5. The cost of building a new pipe is A and the cost of extending a pipe is B.
6. You can take any constructions in any times and the only limit is to make sure the total costs not exceed the budget.
7. All the work that construction team does only lasts one single day.
Then for each day, output the maximum water Pfctgeorge can transfer from S and T with a budget of K.
5 1
1 2 2
1 3 5
2 4 1
4 5 2
1 5 3 3 2
5 5
1 2 10
2 3 2
3 4 7
2 5 7
1 5 0 1 3
1 3 0 2 3
1 5 3 2 3
1 2 7 3 1
1 3 2 3 1
2
Case #2:
7
2
8
17
4
In the first sample case, you can extend the capacity of the pipe which connects city2 and city4 by one, or just build a new pipe between city2 and city4.
/*
hdu4729 树链剖分+二分 problem:
给你n个点,然你求两个点之间的最大流.而且你有一定的钱,可以进行两种操作
1.在任意连个点之间建立一个单位1的流,费用A
2.将原先的流扩大1个单位,费用B solve:
在最初始的图上面u,v之间的流flow即u->v边上的最小值
①如果A<=B,那么我们可以直接在两个目标点u,v之间建边.所以答案为 flow+k/A
②如果A>B
可以先建一条边然后不停地扩展 (flow-A)/B+1
or不停地给最小的边扩展,使u->v的最小值变大. 可以二分找到这个值
最开始是二分(1,10000)结果超时QAQ. 后来发现可以先求出(flow-A)/B+1,那么二分的时候就是((flow-A)/B+1,10000) hhh-2016-08-18 11:39:23
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 200100;
const int inf = 0x3f3f3f3f;
int head[maxn],tot,pos,son[maxn];
int top[maxn],fp[maxn],fa[maxn],dep[maxn],num[maxn],p[maxn];
int val[maxn];
int n;
struct Edge
{
int to,next,w;
} edge[maxn<<1]; void ini()
{
tot = 0,pos = 1;
clr(head,-1),clr(son,-1);
// clr(val,0);
} void add_edge(int u,int v,int w)
{
edge[tot].w = w,edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void dfs1(int u,int pre,int d)
{
dep[u] = d;
fa[u] = pre,num[u] = 1;
// cout << "node:" << u<<endl;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
val[v] = edge[i].w;
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1)return ;
getpos(son[u],sp);
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} struct node
{
int l,r,mid;
ll Min;
} tree[maxn << 2];
void push_up(int i)
{
tree[i].Min = min(tree[lson].Min,tree[rson].Min);
}
void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].Min = inf;
tree[i].mid=(l+r) >>1;
if(l == r)
{
tree[i].Min = val[fp[l]];
// cout << fp[l] <<" " <<val[fp[l]]<<endl;
return;
}
build(lson,l,tree[i].mid);
build(rson,tree[i].mid+1,r);
push_up(i);
} void update(int i,int k,int val)
{
if(tree[i].l == k && tree[i].r == k)
{
tree[i].Min = val;
return;
}
int mid = tree[i].mid;
if(k <= mid) update(lson,k,val);
else update(rson,mid,val);
push_up(i);
}
ll query(int i,int l,int r)
{
// cout <<"l:"<< l <<" r:"<<r <<" min:"<< tree[i].Min<<endl;
if(tree[i].l >= l && tree[i].r <= r)
return tree[i].Min;
int mid = tree[i].mid;
if(r <= mid)
return query(lson,l,r);
else if(l > mid)
return query(rson,l,r);
else
{
return min(query(lson,l,mid),query(rson,mid+1,r));
}
}
ll find_flow(int u,int v)
{
int f1 = top[u],f2 = top[v];
ll tmp = inf;
// cout <<f1 <<" " <<f2 <<endl;
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
tmp = min(tmp,query(1,p[f1],p[u]));
u = fa[f1],f1 = top[u];
}
if(u == v) return tmp;
if(dep[u] > dep[v]) swap(u,v);
// cout << son[u] << " " <<v <<endl;
return min(tmp,query(1,p[son[u]],p[v]));
}
int allnum = 0;
bool can_do(int i,int l,int r,int mid)
{
if(tree[i].l >= l && tree[i].r <= r && tree[i].Min >= mid)
{
return true;
}
if(tree[i].l == tree[i].r)
{
// cout << tree[i].Min <<" " <<mid<<endl;
if(tree[i].Min >= mid)
return true;
allnum -= (mid-tree[i].Min);
if(allnum>= 0) return true;
return false;
}
if(r <= tree[i].mid)
return can_do(lson,l,r,mid);
else if(l > tree[i].mid)
return can_do(rson,l,r,mid);
else
return can_do(lson,l,tree[i].mid,mid)&&can_do(rson,tree[i].mid+1,r,mid);
} bool find_flag(int u,int v,int mid)
{
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
if(!can_do(1,p[f1],p[u],mid))
return false;
u = fa[f1],f1 = top[u];
}
if(u == v) return true;
if(dep[u] > dep[v]) swap(u,v);
return can_do(1,p[son[u]],p[v],mid);
} int a[maxn]; int main()
{
// freopen("in.txt","r",stdin);
int T,cas = 1;
int x,y,k,a,b;
int m,u,v,w;
scanf("%d",&T);
while(T--)
{
ini();
scanf("%d%d",&n,&m);
// cout << n <<" " <<m <<endl;
for(int i =1; i < n; i++)
{
scanf("%d%d%d",&u,&v,&w);
add_edge(u,v,w);
add_edge(v,u,w);
}
dfs1(1,0,0);
getpos(1,1);
build(1,0,pos-1);
// char op[10];
printf("Case #%d:\n",cas++);
for(int i = 1;i <= m;i++)
{
scanf("%d%d%d%d%d",&x,&y,&k,&a,&b);
ll flow = find_flow(x,y);
// cout <<"flow:"<<flow <<endl;
if(k < min(a,b))
{
printf("%I64d\n",flow);
}
else if(a <= b)
{
printf("%I64d\n",flow+(ll)k/a);
}
else
{
ll ans = flow;
if(k > a)
ans += (k-a)/b+1;
int l = ans,r = 10000;
while(l <= r)
{
int mid = (l+r)>>1;
allnum = k/b;
if(find_flag(x,y,mid))
{
ans = mid,l = mid + 1;
}
else
r = mid - 1;
}
printf("%I64d\n",ans);
}
}
}
return 0;
}
hdu4729 树链剖分+二分的更多相关文章
- NOIP 2015 BZOJ 4326 运输计划 (树链剖分+二分)
Description 公元 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n− 条双向航道,每条航道建立在两个星球之间,这 n− 条航道连通了 L 国的所有星球. 小 P 掌管一家物流公司, ...
- BZOJ 4551[Tjoi2016&Heoi2016]树(树链剖分+二分)
Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记 ...
- BZOJ 4326 树链剖分+二分+差分+记忆化
去年NOIP的时候我还不会树链剖分! 还是被UOJ 的数据卡了一组. 差分的思想还是很神啊! #include <iostream> #include <cstring> #i ...
- bzoj 4326: NOIP2015 运输计划【树链剖分+二分+树上差分】
常数巨大,lg上开o2才能A 首先预处理出运输计划的长度len和lca,然后二分一个长度w,对于长度大于w的运输计划,在树上差分(d[u]+1,d[v]+1,d[lca]-2),然后dfs,找出所有覆 ...
- bzoj 4326: NOIP2015 运输计划(二分+树链剖分)
传送门 题解: 树链剖分快速求解任意两点间的路径的权值和: 然后,二分答案: 此题的难点是如何快速求解重合路径? 差分数组可以否??? 在此之前先介绍一下相关变量: int fa[maxn]; int ...
- HDU 4729 An Easy Problem for Elfness(树链剖分边权+二分)
题意 链接:https://cn.vjudge.net/problem/HDU-4729 给你n个点,然你求两个点s和t之间的最大流.而且你有一定的钱k,可以进行两种操作 1.在任意连个点之间建立一个 ...
- bzoj1146整体二分+树链剖分+树状数组
其实也没啥好说的 用树状数组可以O(logn)的查询 套一层整体二分就可以做到O(nlngn) 最后用树链剖分让序列上树 #include<cstdio> #include<cstr ...
- BZOJ_4326_[NOIP2015]_运输计划_(二分+LCA_树链剖分/Tarjan+差分)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=4326 给出一棵带有边权的树,以及一系列任务,任务是从树上的u点走到v点,代价为u到v路径上的权 ...
- bzoj4326 树链剖分 + 线段树 // 二分 lca + 树上差分
https://www.lydsy.com/JudgeOnline/problem.php?id=4326 题意:N个点的树上给M条树链,问去掉一条边的权值之后所有树链长度和的最大值最小是多少. 首先 ...
随机推荐
- 201621123050 《Java程序设计》第4周学习总结
1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 继承.抽象.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需要出现过多的字. 1.3 可选:使用常规方法 ...
- C语言--第七周作业
一.求交错序列前N项和 1.代码 #include <stdio.h> int main() { int i=1,N; double j=0,sum=0; scanf("%d&q ...
- Django 模版语法
一.简介 模版是纯文本文件.它可以产生任何基于文本的的格式(HTML,XML,CSV等等). 模版包括在使用时会被值替换掉的 变量,和控制模版逻辑的 标签. {% extends "base ...
- xShell终端下中文乱码问题
今天,可能是因为不小心中途打断了xShell更新,结果打开xShell发现里面的中文全成了乱码.于是去网上查了一下原因. 更新xshell(xshell5)以及其他终端中文乱码的原因无非有三种 (1 ...
- 【学习笔记】windows安装jhipster踏坑记录
序: 入职新公司第二天了,本来第一天是配置环境来着,配了一下午也没搞成那个jhipster的安装,每次以为应该正常的时候都是不对,yo是yeoman的指令,但是我是使用yarn管理的yeoman 纠结 ...
- C语言Linix服务器网络爬虫项目(一)项目初衷和网络爬虫概述
一.项目初衷和爬虫概述 1.项目初衷 本人的大学毕设就是linux上用c写的一个爬虫,现在我想把它完善起来,让他像一个企业级别的项目.为了重复发明轮子来学习轮子的原理,我们不使用第三方框架(这里是说的 ...
- 使用 Vue 和 epub.js 制作电子书阅读器
ePub 简介 ePub 是一种电子书的标准格式,平时我看的电子书大部分是这种格式.在手机上我一般用"多看"阅读 ePub 电子书,在 Windows 上找不到用起来比较顺心的软件 ...
- 20165230 2017-2018-2 《Java程序设计》第4周学习总结
20165230 2017-2018-2 <Java程序设计>第4周学习总结 教材学习内容总结 子类与继承 通过class 子类名 extends 父类名定义子类.子类只能继承一个父类,关 ...
- QT5.5与MYSQL5.6数据库连接的具体方法与实现
由于毕设需要用到QT读取数据库中的数据,并将数据保存至数据库中.花了一天的时间,总算实现了从QT中读取数据库中的数据.网上相关资料很多,但是写得不是很全,中间出现了一些问题,解决起来比较麻烦.所以本文 ...
- JS笔记(一)
第一章: 编写JS流程: 1. 布局:HTML和CSS 2. 样式:修改页面元素样式,div的display样式 3. 事件:确定用户做什么操作,onclick(鼠标点击事件).onmouseo ...