bzoj4514
4514: [Sdoi2016]数字配对
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1870 Solved: 712
[Submit][Status][Discuss]
Description
有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。
Input
第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。
Output
一行一个数,最多进行多少次配对
Sample Input
3
2 4 8
2 200 7
-1 -2 1
Sample Output
4
HINT
n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5
emmm
每种数字看成点,拆点为xi,yi
S向xi连容量bi费用0的边,yi向T连容量bi费用0的边
如果两种数字u,v可以配对xu连yv,yu连xv容量均为inf,费用均为cu*cv
贪心跑最大费用,直到跑出来的费用为负,特判一波break掉
注意longlong
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#define inf 0x3f3f3f3f
#define ll long long
#define N 405
using namespace std;
int n,m,tot,S,T,flow,hd[N],pre[N],a[N],vis[N];
ll cost,d[N];
struct edge{int u,v,next,cap;ll w;}e[N*N*2];
void adde(int u,int v,ll w,int c){
e[tot].v=v;
e[tot].u=u;
e[tot].w=w;
e[tot].next=hd[u];
e[tot].cap=c;
hd[u]=tot++;
}
struct ele{int a,b,c;}p[N];
bool cmp(ele a,ele b){return a.a>b.a;}
bool judge(int x){
int y=sqrt(x);
if(x<=1)return 0;
for(int i=2;i<=y;i++)
if(!(x%i))return 0;
return 1;
}
bool spfa(){
queue<int>q;ll t=(ll)inf*inf;
for(int i=S;i<=T;i++)d[i]=-t;d[S]=0;
memset(pre,-1,sizeof(pre));a[S]=1<<30;
q.push(S);
while(!q.empty()){
int u=q.front();q.pop();vis[u]=0;
for(int i=hd[u];~i;i=e[i].next){
int v=e[i].v;
if(e[i].cap&&d[v]<d[u]+e[i].w){
d[v]=d[u]+e[i].w;
pre[v]=i;
a[v]=min(a[u],e[i].cap);
if(vis[v])continue;
vis[v]=1;q.push(v);
}
}
}
if(d[T]==-t)return 0;
ll tmp=a[T]*d[T];
if(cost+tmp<0){
ll res=cost/d[T];
flow-=(int)res;
return 0;
}
flow+=a[T];cost+=(ll)a[T]*d[T];
int u=T;
while(u!=S){
e[pre[u]].cap-=a[T];
e[pre[u]^1].cap+=a[T];
u=e[pre[u]].u;
}
return 1;
}
int main(){
#ifdef wsy
freopen("pair4.in","r",stdin);
#else
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
#endif
memset(hd,-1,sizeof(hd));
scanf("%d",&n);
S=0;T=n*2+1;
for(int i=1;i<=n;i++)scanf("%d",&p[i].a);
for(int i=1;i<=n;i++)scanf("%d",&p[i].b);
for(int i=1;i<=n;i++)scanf("%d",&p[i].c);
sort(p+1,p+1+n,cmp);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++){
if(p[i].a%p[j].a)continue;
if(!judge(p[i].a/p[j].a))continue;
adde(i,j+n,(ll)p[i].c*p[j].c,inf);
adde(j+n,i,(ll)p[i].c*p[j].c*(-1),0);
adde(j,i+n,(ll)p[i].c*p[j].c,inf);
adde(i+n,j,(ll)p[i].c*p[j].c*(-1),0);
}
for(int i=1;i<=n;i++){
adde(S,i,0,p[i].b);
adde(i,S,0,0);
adde(i+n,T,0,p[i].b);
adde(T,i+n,0,0);
}
while(spfa());
printf("%d",flow/2);
return 0;
}
bzoj4514的更多相关文章
- 【bzoj4514】 Sdoi2016—数字配对
http://www.lydsy.com/JudgeOnline/problem.php?id=4514 (题目链接) 题意 n个数,每个数值为a[i],有b[i]个,权值为c[i].若两个数能配对当 ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
- 【BZOJ4514】数字配对(费用流)
题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci× ...
- bzoj-4514(网络流)
题目链接: 4514: [Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数 ...
- 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 726 Solved: 309[Submit][Status ...
- BZOJ4514——[Sdoi2016]数字配对
有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...
- [bzoj4514]数字配对[费用流]
今年SDOI的题,看到他们在做,看到过了一百多个人,然后就被虐惨啦... 果然考试的时候还是打不了高端算法,调了...几天 默默地yy了一个费用流构图: 源连所有点,配对的点连啊,所有点连汇... 后 ...
- bzoj4514: [Sdoi2016]数字配对--费用流
看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...
- bzoj4514 [Sdoi2016]数字配对
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
随机推荐
- Flask 蓝图(Blueprint)
蓝图使用起来就像应用当中的子应用一样,可以有自己的模板,静态目录,有自己的视图函数和URL规则,蓝图之间互相不影响.但是它们又属于应用中,可以共享应用的配置.对于大型应用来说,我们可以通过添加蓝图来扩 ...
- Flask 学习 十二 用户评论
评论在数据库中的表示 由于评论和2个模型有关系,分别是谁发了评论,以及评论了哪个文章,所以这次要更新数据库模型 models.py 创建用户评论数据库模型 class Comment(db.Model ...
- 要学好JAVA要注意些什么?
从自学开始到参加系统的学习JAVA已经差不多有1个月了的时间了,在这段时间以前我也和很多人一样在网上盲目的搜罗一些视频来自己啃,随着时间的积累,对JAVA的认识也有了一定的提升,之前可能因为在IT咨询 ...
- 从PRISM开始学WPF(六)MVVM(二)Command?
从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...
- Python之旅.第三章.函数3.26
一.函数: 1.为什么要有函数?什么是函数? 1.组织结构不清晰,可读性差 2.代码冗余 3.管理维护的难度极大,扩展性 具备某一个功能的工具就是程序的中函数 事先准备工具的过程---->函数的 ...
- maven安装、配置
maven的安装和配置 1.将maven解压到自定义文件夹下.例如解压到如下目录(解压目录最好不要有中文字): 2:配置环境变量:一定要注意要用分号:与其他值隔开 3.在cmd中测试,验证是否安装成 ...
- PHP常用函数集合
PHP常用函数总结 数学函数 1.abs(): 求绝对值 $abs = abs(-4.2); //4.2 数字绝对值数字 2.ceil(): 进一法取整 echo ceil(9.999); // 10 ...
- Mysql官方文档翻译系列14.18--MySql备份与恢复
原文链接: (https://dev.mysql.com/doc/refman/5.7/en/innodb-backup-recovery.html) The key to safe database ...
- python3.6执行pip3时 Unable to create process using '"'
问题需求 由于在windows操作系统中已经安装了python2.7,要在安装python3的时候 将python3.6安装在C:\Python36目录下 然后进入C:\Python36目录下执行pi ...
- anguar使用指令写选项卡
今天,我们来学习一下angular中怎么使用指令来实现两个选项卡的问题. 首先,要先引入jQuery文件与angularjs文件. <!DOCTYPE html><html lang ...