[HNOI2001]矩阵乘积
题目描述
输入输出格式
输入格式:
第1行为:x y (第1行为两个正整数:x,y分别表示输出结果所在的行和列)
第2行为:m n o p(第2行给出的正整数表明A为m×n矩阵,B为n×o矩阵,C为o×p矩阵)
第3行为:i j a(第3行以后的每一行有三个整数分别是矩阵的三元组表示法中的一个元素的值,每个矩阵之间有一个空行。表示的顺序是矩阵A、B和C)
… … … … … …
注:1≤m,n,o,p≤6000,三元数组的总个数不大于6000。数据之间用空格分开。
输出格式:
为 的第x行第y列元素的值。
输入输出样例
1 2
3 4 2 3
1 1 3
1 4 5
2 2 1
3 1 2 1 2 2
2 1 1
3 1 2
3 2 4 1 2 2
1 3 3
2 1 1
2 2 2
12
只需要(x,y)的值
ans(x,y)=∑B[x][k]*c[k][y]
B[i][k]=∑a[i][p]*b[p][k]
所以可以只求一部分的值
输入部分用一种水法,还好数据弱
如果前面输入(i,j),后面输入(a,b)
(a,b)<(i,j) 则为另一矩阵
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int m,n,o,p,x,y,A[],B[];
int main()
{int a,b,c,i,j,z;
cin>>x>>y;
cin>>m>>n>>o>>p;
scanf("%d%d%d",&a,&b,&z);
while ()
{
if (a==x) A[b]=z;
scanf("%d%d%d",&i,&j,&c);
if (i<a||(i==a&&j<=b)) break;
a=i;b=j;z=c;
}
a=i;b=j;z=c;
while ()
{
B[b]+=A[a]*z;
scanf("%d%d%d",&i,&j,&c);
if (i<a||(i==a&&j<=b)) break;
a=i;b=j;z=c;
}
memcpy(A,B,sizeof(A));
memset(B,,sizeof(B));
a=i;b=j;z=c;
while ()
{
if (b==y) B[b]+=A[a]*z;
scanf("%d%d%d",&i,&j,&c);
if (i<a||(i==a&&j<=b)) break;
a=i;b=j;z=c;
}
cout<<B[y]<<endl;
}
[HNOI2001]矩阵乘积的更多相关文章
- 卷积、矩阵乘积、高斯模糊滤波(降噪)、空域计算(2D卷积计算)、频域计算(FFT)的理解
矩阵乘积:对应行列对应元素相乘的和组成新的矩阵 两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵 并将此乘积记为: ...
- hdu 5068 线段树维护矩阵乘积
http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...
- 2014 HDU多校弟五场J题 【矩阵乘积】
题意很简单,就是两个大矩阵相乘,然后求乘积. 用 Strassen算法 的话,当N的规模达到100左右就会StackOverFlow了 况且输入的数据范围可达到800,如果变量还不用全局变量的话连内存 ...
- ZOJ - 2671 Cryptography(线段树+求区间矩阵乘积)
题意:已知n个矩阵(下标从1开始),求下标x~y区间矩阵的乘积.最多m次询问,n ( 1 <= n <= 30,000) and m ( 1 <= m <= 30,000). ...
- [HNOI 2001]矩阵乘积
Description Input Output Sample Input 1 2 3 4 2 3 1 1 3 1 4 5 2 2 1 3 1 2 1 2 2 2 1 1 3 1 2 3 2 4 1 ...
- HDU 4920 矩阵乘积 优化
Matrix multiplication Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/ ...
- HihoCode-1675-稀疏矩阵乘积
上来先一顿暴力,结果70分就超时了. 然后意识到稀疏矩阵,有很多0,如果c[i][j] != 0,那么一定存在至少一个k满足a[i][k] != 0 && b[k][j] != 0; ...
- [图解tensorflow源码] MatMul 矩阵乘积运算 (前向计算,反向梯度计算)
- CF719E(线段树+矩阵快速幂)
题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...
随机推荐
- ORA-03206,当表空间不够时,如何以添加数据文件的方式扩展表空间
准备导入一个数据库,大约为33G,开始创建的空库表空间为自增到20G,结果自然不够,然后就开始自动扩展表空间大小 使用的如下语句 --自动扩展表空间大小 ALTER DATABASE DATAFILE ...
- C语言嵌套循环作业
一.PTA实验作业 题目1:7-4 换硬币 1. 本题PTA提交列表 2. 设计思路 1.定义fen5:5分硬币数量, fen2:2分硬币数量, fen1:1分硬币数量, total:硬币总数量,co ...
- alpha-咸鱼冲刺day6
一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 !!!QAQ可以做到跟数据库交互了!!!!先来撒花花!(然后继续甲板) (然后就没有进展了.翻车+1s) 四,问题困难 数据库交 ...
- 团队作业4——第一次项目冲刺(Alpha版本)11.14
a. 提供当天站立式会议照片一张 举行站立式会议,讨论项目安排: PM对整个项目的需求进行讲解: 全队对整个项目的细节进行沟通: 对整个项目的开发计划进行分析,分配每天的任务: 统一确定项目的开发环境 ...
- Basic FIFO Queue
Queue - 一种线程安全的FIFO实现 Python的Queue模块提供一种适用于多线程编程的FIFO实现.它可用于在生产者(producer)和消费者(consumer)之间线程安全(threa ...
- python实现简单tftp(基于udp)
tftp是基于udp的协议 实现简单的tftp,首先要有tftp的协议图. tftp默认接收端口为69,但每次有连接过来后,tftp会随机分配一个端口来专门为这个连接来服务. 操作码:1.上传 2.下 ...
- 使用SecureCRTP 连接生产环境的web服务器和数据库服务器
一.使用SecureCRTP 连接生产环境的web服务器 首先,需要知道以下参数信息: 1.web服务器的ip地址 2.服务器的端口号 3.会话连接的用户名和密码 4.服务器的用户名 ...
- Java 持久化操作之 --io流与序列化
1)File类操作文件的属性 1.File类的常用方法 1. 文件的绝对完整路径:getAbsolutePath() 文件名:getName() 文件相对路径:getPath() 文件的上一级目录:g ...
- 自动化服务部署(一):Linux下安装JDK
自动化测试的主要目的是为了执行回归测试.当然,为了模拟真实的用户操作,一般都是在UAT或者生产环境进行回归测试. 为了尽量避免内网和外网解析对测试结果的影响,将自动化测试服务部署在外网的服务器是比较好 ...
- Linux入门:usermod - 修改用户帐户信息
一.什么是usermod? usermod 命令通过修改系统帐户文件来修改用户账户信息usermod [options] user_name选项(options)-a|--append ##把用户追加 ...