bzoj 2783: [JLOI2012]树
Description
在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。
解题报告:
用时20min,1AC
这题找到了题面就简单了,因为题目要求路径深度要满足升序,所以直接把一个点的所有的父节点都压人栈中,然后二分到那个位置,如果存在这样的路径答案就加1
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=100005;
int head[N],num=0,S,nxt[N<<1],to[N<<1],val[N],n,st[N],top=0,dis[N];
void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
bool check(int x){
int l=0,r=top,mid;
while(l<=r){
mid=(l+r)>>1;
if(dis[x]-dis[st[mid]]==S)return true;
if(dis[x]-dis[st[mid]]<S)r=mid-1;
else l=mid+1;
}
return false;
}
int ans=0;
void dfs(int x,int last){
int u;st[++top]=x;
ans+=check(x);
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==last)continue;
dis[u]=dis[x]+val[u];
dfs(u,x);
}
top--;
}
void work()
{
int x,y;
scanf("%d%d",&n,&S);
for(int i=1;i<=n;i++)scanf("%d",&val[i]);
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
link(x,y);link(y,x);
}
dis[1]=val[1];dfs(1,1);
printf("%d\n",ans);
}
int main()
{
work();
return 0;
}
bzoj 2783: [JLOI2012]树的更多相关文章
- bzoj 2783: [JLOI2012]树【树上差分】
注意是等于s不是大于s dfs,用set或者map存这条链到root的点权和sum[u],更新答案的时候查一下有没有s-sum[u]即可 #include<iostream> #inclu ...
- 2783: [JLOI2012]树( dfs + BST )
直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...
- BZOJ2783: [JLOI2012]树 dfs+set
2783: [JLOI2012]树 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 588 Solved: 347 Description 数列 提交文 ...
- BZOJ 2243 染色 | 树链剖分模板题进阶版
BZOJ 2243 染色 | 树链剖分模板题进阶版 这道题呢~就是个带区间修改的树链剖分~ 如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了. 这道题要注意的是,无论是线段树上 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- 【BZOJ2783】[JLOI2012]树 DFS+栈+队列
[BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...
- 题解 P3252 【[JLOI2012]树】
\(\Huge{[JLOI2012]树}\) 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点 ...
- 洛谷——P3252 [JLOI2012]树
P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...
- 洛谷 P3252 [JLOI2012]树
P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...
随机推荐
- pickle使用及案例
一.字典格式数据源写入数据库文件 #!/usr/bin/env python # -*- coding:utf-8 -*- import pickle accounts ={1000:'alex', ...
- leetcode题解 6.ZigZag Conversion
6.ZigZag Conversion 题目: The string "PAYPALISHIRING" is written in a zigzag pattern on a gi ...
- 第一章 jQuery基础
第一章jQuery基础 一.jQuert简介 1.什么是jQuery jQuery是javaScript的程序库之一,它是javaScript对象和实用函数的封装. jQuery是继Prototype ...
- flask 视图函数的使用
flask框架 视图函数当中 各种实用情况简单配置 1 建立连接 2 路由参数 3 返回网络状态码 4 自定义错误页面 5 重定向 6 正则url限制 和 url 优化 7 设置和获取cookie # ...
- PyMySQL模块的使用
PyMySQL介绍 PyMySQL是在Python3.x版本中用于连接MySQL服务器的一个库,Python2系列中则使用mysqldb.Django中也可以使用PyMySQL连接MySQL数据库. ...
- git初试
在gitLab上新建一个项目,creat项目文件之后,进入到项目的路径之后,复制命令git clone ‘git@gitlab.touzila.com:xiacaixiang/gitgitTest1. ...
- python/MySQL练习题(二)
python/MySQL练习题(二) 查询各科成绩前三名的记录:(不考虑成绩并列情况) select score.sid,score.course_id,score.num,T.first_num,T ...
- ajax处理跨域有几种方式
一.什么是跨域 同源策略是由Netscape提出的著名安全策略,是浏览器最核心.基本的安全功能,它限制了一个源(origin)中加载文本或者脚本与来自其他源(origin)中资源的交互方式,所谓的同源 ...
- equals方法的编写建议
1.显示参数命名为 otherObject ,稍后需要将其转换成另一个叫做 other 的变量. 2.检测 this 与 otherObject 是否引用同一个对象: //这条语句只是一个优化.计算这 ...
- kubernetes controller 实现
对于kubernetes中不存在的资源类型,我们可以通过自定义资源的方式进行扩展,首先创建customresourcedefinition对象定义资源及其schema,然后就可以创建自定义的资源了,但 ...