[Codeforces]906D Power Tower
虽说是一道裸题,但还是让小C学到了一点姿势的。
Description
给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求:
对m取模的值。
Input
第一行两个整数n,m,表示数组长度和模数。
接下来一行n个数,表示w数组。
接下来一行一个整数q,表示询问次数。
接下来q行,每行两个整数l,r,表示一次询问。
Output
对于每次询问,输出一行一个整数表示答案。
Sample Input
6 1000000000
1 2 2 3 3 3
8
1 1
1 6
2 2
2 3
2 4
4 4
4 5
4 6
Sample Output
1
1
2
4
256
3
27
597484987
HINT
1 ≤ n ≤ 105,1 ≤ m ≤ 109,1 ≤ wi ≤ 109,1 ≤ q ≤ 105,1 ≤ l ≤ r ≤ n。
Solution
看到这么清奇的式子,你大概会第一时间想到降幂大法吧?
先说说扩展欧拉定理,对于任意正整数a,b,p:
所以假设堆叠的幂次足够大,那么式子就可以转化为:
已知p经过至多2log次phi就会变成1。
所以递归求解,至多走到2log层模数就会变成1,所以返回0就行。
所以这道题就非常显然了,首先预处理出m的所有phi,对于每个询问,从l开始直接递归暴力,直到模数为1时返回。
还有一个问题,在求a^b%p的时候,怎么比较b和phi(p)的大小呢?
一种思路就是暴力计算a的后log项的值,注意还要特判1的情况,但这样写起来确实麻烦。
当然,有一种非常精妙的取模写法:
int modulo(ll x,int mod) {return x<mod?x:x%mod+mod;}
这是在做什么呢?这就是在比较b和phi(p)的大小,如果b<phi(p),返回b;否则返回b%phi(p)+phi(p)。
然后原式就变成了这样:
这样做看上去漏洞百出,可能的情况是,原本我们要计算,其中大等于。
然而我们计算,将取模后,却发现小于了。
是否有这种可能呢?
其实就相当于判断是否有可能成立,我们可以发现,当a>2时式子是不可能成立的。
所以我们来看一看 是否有可能成立。
有可能。
当且仅当p=6时,不等式成立。
然而6有什么特殊的性质呢?
我们发现phi(x)=6只有三个解:x=7,x=9或x=18。
所以接下来我们只要证明 和 即 和 在对x取模的意义下相等即可。(其中phi(x)=6)
若a为x的倍数,显然它们对x取模都等于0,对于答案无影响。
当x=7时,,所以 ;
当x=9时,若 ,则影响同上;
若 ,一定有,所以一定有 ,
所以一定有 ,对于答案是没有影响的;
当x=18时,若 或 ,则影响同上;
我们有一个显然的结论:同余方程 的解为
若 ,则 ,则 ,则
若 ,则 且 ,则 ,则
所以综上,我们就证明了该算法的正确性。
时间复杂度。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define MN 100005
using namespace std;
int a[MN],mod[MN];
int n,p;
bool fg; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} inline int pro(ll x,int md) {return x<md?x:x%md+md;}
inline int mi(int x,int y,int md)
{
register int z=;
for (;y;x=pro(1LL*x*x,md),y>>=)
if (y&) z=pro(1LL*z*x,md);
return z;
} int dfs(int x,int y,int lim)
{
if (x==lim) return a[x]>=mod[y]?a[x]%mod[y]+mod[y]:a[x];
if (mod[y]==) return ;
return mi(a[x],dfs(x+,y+,lim),mod[y]);
} int main()
{
register int i,j,x,y;
n=read(); mod[]=read();
for (i=;mod[i]>;++i)
{
mod[i+]=x=mod[i];
for (j=;j*j<=x;++j)
{
for (fg=;x%j==;x/=j,fg=true);
if (fg) mod[i+]=1LL*mod[i+]*(j-)/j;
}
if (x>) mod[i+]=1LL*mod[i+]*(x-)/x;
}
for (i=;i<=n;++i) a[i]=read();
for (p=read();p;--p)
{
x=read(); y=read();
printf("%d\n",dfs(x,,y)%mod[]);
}
}
Last Word
打Codeforces的时候正纳闷这种情况该怎么处理,却发现大佬们清一色都是这么写的。
小C觉得自己的证明蠢得不行啊……
如果读者有更直观的证明该算法的正确性的方法请务必告诉小C。
[Codeforces]906D Power Tower的更多相关文章
- CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...
- Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)
题目链接 Power Tower 题意 给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$ 对m取模的值 根据这个公式 每次 ...
- Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)
题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...
- [CodeForces - 906D] Power Tower——扩展欧拉定理
题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...
- CodeForces 907F Power Tower(扩展欧拉定理)
Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...
- 【CodeForces】906 D. Power Tower 扩展欧拉定理
[题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...
- Codeforces Round #454 D. Power Tower (广义欧拉降幂)
D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...
- CodeForces 906D (欧拉降幂)
Power Tower •题意 求$w_{l}^{w_{l+1}^{w_{l+2}^{w_{l+3}^{w_{l+4}^{w_{l+5}^{...^{w_{r}}}}}}}}$ 对m取模的值 •思路 ...
- [CodeForces - 1225D]Power Products 【数论】 【分解质因数】
[CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory ...
随机推荐
- 安装QT5.02
1.下载QT5 SDK 下载地址:http://qt-project.org/downloads. 2.安装QT5 下载完后,假设放在Download/,切换到该目录,输入:./qt-linux-op ...
- Flask 学习 十一 关注者
数据库关系 1.1多对多关系 添加第三张表(关联表),多对多关系可以分解成原表和关联表之间的两个一对多的关系 多对多仍然使用db.relationship()方法定义,但是secondary参数必须设 ...
- 【技巧】Java工程中的Debug信息分级输出接口及部署模式
也许本文的标题你们没咋看懂.但是,本文将带大家领略输出调试的威力. 灵感来源 说到灵感,其实是源于笔者在修复服务器的ssh故障时的一个发现. 这个学期初,同袍(容我来一波广告产品页面,同袍官网)原服务 ...
- 【转】optach学习
[转自:https://yq.aliyun.com/articles/28007,仅作学习用途] 摘要: Opatch 是oracle公司开发的安装,卸载,检测patch冲突的工具,管理oracle所 ...
- SpringBoot应用的启动方式
一:IDE 运行Application这个类的main方法 二:在SpringBoot的应用的根目录下运行mvn spring-boot:run 三:使用mvn install 生成jar后运行 先到 ...
- 阿里云API网关(18)请求报文和响应报文
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- MSSQl 事务的使用
事务具有以下四个特性: 1.原子性 事务的原子性是指事务中包含的所有操作要么全做,要么全不做. 2.一致性 在事务开始以前,数据库处于一致性的状态,事务结束后,数据库也必须处于一致性状态. 3.隔离性 ...
- github生成SSH公钥
ssh-keygen -t rsa -C "your_email@youremail.com" 然后输入github上的密码 Enter passphrase (empty for ...
- Linux-centos-7.2-64bit 安装配置mysql
2018-04-12 安装在/usr/local/下,配置文件在/etc/my.ini 1.下载mysql安装包到 /usr/local/software cd /usr/local/software ...
- pymysql.err.ProgrammingError: 1064 (Python字符串转义问题)
代码: sql = """INSERT INTO video_info(video_id, title) VALUES("%s","%s&q ...