[51nod1238]最小公倍数之和V3
来自FallDream的博客,未经允许,请勿转载,谢谢。
------------------------------------------------------------------------------------------
题意:求$$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) \\\ n\leqslant 10^{10}$$
题解:题目即求$$\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{i*j}{gcd(i,j)}$$
$$=\sum_{d=1}^{n}d*\sum_{i=1}^{\lfloor n/d\rfloor}\sum_{j=1}^{\lfloor n/d\rfloor}i*j*[gcd(i,j)=1]$$
已知$$\sum_{i=1}^{n}i*[gcd(i,n)=1]=\frac{n*\varphi(n)}{2}$$
所以所求即为$$\sum_{d=1}^{n}d*\sum_{i=1}^{\lfloor n/d\rfloor}i*i*\varphi(i)$$
$\lfloor\frac{n}{d}\rfloor$只有$\sqrt(n)$种取值,那么我们考虑快速求出$g(i)=i^{2}*\varphi(i)$的前缀和$S(i)$。
$$\sum_{n|d}\varphi(d)=n$$
$$\sum_{i=1}^{n}\sum_{d|n}\varphi(d)=\frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n}\sum_{d|n}\varphi(d)*i^{2}=\frac{n^{2}*(n+1)^{2}}{4}$$
$$\sum_{i=1}^{n}\sum_{d|n}g(d)*(\frac{i}{d})^{2}=\frac{n^{2}*(n+1)^{2}}{4}$$
$$\sum_{i=1}^{n}\sum_{d=1}^{\lfloor n/i\rfloor}g(d)*i^{2}=\frac{n^{2}*(n+1)^{2}}{4}$$
$$S(i)=\frac{n^{2}*(n+1)^{2}}{4}-\sum_{i=2}^{n}i^{2}*S(\lfloor n/i\rfloor)$$
这个可以在$O\left(n^{\frac{2}{3}}\right)$时间内做完。此题得解。
-------------------------------------------------------------------
我好菜啊,推了好久.....
-----
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#define MAXN 5000000
#define ll long long
#define mod 1000000007
#define ditoly 6666666
#define inv2 500000004
#define inv4 250000002
#define inv6 166666668
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
} struct mymap{
ll x,ans;int next;
}e[];
ll phi[MAXN+],n,ans=;
int s[MAXN/],num=,head[ditoly+];
bool b[MAXN+]; inline ll getcube(ll x){x%=mod;return x*(x+)%mod*(x<<|)%mod*inv6%mod;} inline void ins(ll x,ll sum)
{
int j=x%ditoly;
e[++num]=(mymap){x,sum,head[j]};head[j]=num;
} inline ll getsq(ll x){x%=mod;x=x*(x+)%mod;return x*x%mod*inv4%mod;} ll calc(ll x)
{
if(x<=MAXN)return phi[x];
for(int i=head[x%ditoly];i;i=e[i].next)
if(e[i].x==x)return e[i].ans;
ll last,sum=getsq(x);
for(ll i=;i<=x;i=last+)
{
last=x/(x/i);
sum-=(getcube(last)-getcube(i-)+mod)%mod*calc(x/i)%mod;
while(sum<)sum+=mod;
}
ins(x,sum);
return sum;
} int main()
{
n=read();phi[]=;
for(int i=;i<=MAXN;i++)
{
if(!b[i]) phi[i]=i-,s[++num]=i;
for(int j=;s[j]*i<=MAXN;j++)
{
b[s[j]*i]=;
if(i%s[j]==){phi[s[j]*i]=phi[i]*s[j];break;}
phi[s[j]*i]=phi[i]*(s[j]-);
}
}num=;
for(int i=;i<=MAXN;i++)
phi[i]=(phi[i-]+1LL*i*i%mod*phi[i]%mod)%mod;
for(ll i=,last;i<=n;i=last+)
{
last=n/(n/i);ll x=(n/i)%mod;
ans+=x*(x+)%mod*inv2%mod*((calc(last)-calc(i-)+mod)%mod)%mod;
while(ans>=mod)ans-=mod;
}
cout<<(ans+mod)%mod;
return ;
}
[51nod1238]最小公倍数之和V3的更多相关文章
- 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...
- 51nod1238 最小公倍数之和 V3(莫比乌斯反演)
题意 题目链接 Sol 不想打公式了,最后就是求一个 \(\sum_{i=1}^n ig(\frac{N}{i})\) \(g(i) = \sum_{i=1}^n \phi(i) i^2\) 拉个\( ...
- 51nod1238 最小公倍数之和 V3
又被这神仙题给坑爆了. 神仙题解. 一开始我把lcm变成ij/gcd然后按照常规套路去推,推到最后发现不是miu * Id而是miu · Id......这还搞鬼啊. 正解居然跟这个差不多,先转成求其 ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- 51nod1238. 最小公倍数之和 V3(数论)
题目链接 https://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题解 本来想做个杜教筛板子题结果用另一种方法过了...... 所谓 ...
- [51nod1238] 最小公倍数之和 V3(杜教筛)
题面 传送门 题解 懒了--这里写得挺好的-- //minamoto #include<bits/stdc++.h> #define R register #define ll long ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51 NOD 1238 最小公倍数之和 V3
原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...
随机推荐
- 《高级软件测试》11.15.全组完成jira安装,开始任务的部分书写
今日任务完成情况如下: 小段:完成linux环境上jira的安装,并将jira的安装过程录制下来 小费:完成linux环境下jira的安装,开始部分任务的书写 小高:完成了jira的安装,并进一步熟悉 ...
- [Cerc2013]Magical GCD
https://vjudge.net/problem/UVA-1642 题意:在一个序列中,找出一段连续的序列,使得长度*gcd最大 固定右端点,当左端点从左向右移动时,gcd不变或变大 gcd相同时 ...
- Microsoft dynamic 批量更新
//批量处理 ExecuteMultipleRequest multipleRequest = new ExecuteMultipleRequest() { Settings = new Execut ...
- jenkins简单安装及配置(Windows环境)
jenkins是一款跨平台的持续集成和持续交付.基于Java开发的开源软件,提供任务构建,持续集成监控的功能,可以使开发测试人员更方便的构建软件项目,提高工作效率. Windows平台下,一般安装方法 ...
- 在WebStorm中启动Angular项目
点击配置 创建 选择命令 package.json 运行 查看运行结果
- 如何将portfolio产品图片上的悬停去掉?
在Avada主题里,文章和portfolio的分类界面的图片,鼠标移入后都会出现这个东西 那么如何把它去掉,改为直接点击产品图片后进入产品详情页呢? 在theme option里搜索image rol ...
- idea找不到package下的mapper.xml文件
由于开发人员使用不同的开发工具,导致eclipse的开发人员将mapper.xml文件习惯性的放到package下,以便查看,而eclipse编译时,不会忽略package下的xml以及dtl文件,所 ...
- GIT入门笔记(19)GIT 小结
1.add和commit为什么Git添加文件需要add,commit一共两步呢?因为commit可以一次提交很多文件,所以你可以多次add不同的文件,比如:$ git add file1.txt$ g ...
- bootstrap 菜单之手风琴效果
自己用bootstrap搭了个项目,纯属娱乐....为了检验学习bootstrap之成果. 效果如图: 一.搭建中发现一问题,因为以前测试都是写的html页面,这次用了母版页,点击页面的之后,页面会刷 ...
- C# word文档转换成PDF格式文档
最近用到一个功能word转pdf,有个方法不错,挺方便的,直接调用即可,记录下 方法:ConvertWordToPdf(string sourcePath, string targetPath) so ...