一.KNN算法概述

KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的。那么什么是KNN算法呢,接下来我们就来介绍介绍吧。

二.KNN算法介绍

KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了。K个最近邻居,毫无疑问,K的取值肯定是至关重要的。那么最近的邻居又是怎么回事呢?其实啊,KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别。听起来有点绕,还是看看图吧。

图中绿色的点就是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点(这里用圆圈把它圈起来了),看看哪种类别多一些,比如这个例子中是蓝色三角形多一些,新来的绿色点就归类到蓝三角了。

但是,当K=5的时候,判定就变成不一样了。这次变成红圆多一些,所以新来的绿点被归类成红圆。从这个例子中,我们就能看得出K的取值是很重要的。

明白了大概原理后,我们就来说一说细节的东西吧,主要有两个,K值的选取点距离的计算

2.1距离计算

要度量空间中点距离的话,有好几种度量方式,比如常见的曼哈顿距离计算,欧式距离计算等等。不过通常KNN算法中使用的是欧式距离,这里只是简单说一下,拿二维平面为例,,二维空间两个点的欧式距离计算公式如下:

这个高中应该就有接触到的了,其实就是计算(x1,y1)和(x2,y2)的距离。拓展到多维空间,则公式变成这样:

这样我们就明白了如何计算距离,KNN算法最简单粗暴的就是将预测点与所有点距离进行计算,然后保存并排序,选出前面K个值看看哪些类别比较多。但其实也可以通过一些数据结构来辅助,比如最大堆,这里就不多做介绍,有兴趣可以百度最大堆相关数据结构的知识。

2.2 K值选择

通过上面那张图我们知道K的取值比较重要,那么该如何确定K取多少值好呢?答案是通过交叉验证(将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如6:4拆分出部分训练数据和验证数据),从选取一个较小的K值开始,不断增加K的值,然后计算验证集合的方差,最终找到一个比较合适的K值。

通过交叉验证计算方差后你大致会得到下面这样的图:

这个图其实很好理解,当你增大k的时候,一般错误率会先降低,因为有周围更多的样本可以借鉴了,分类效果会变好。但注意,和K-means不一样,当K值更大的时候,错误率会更高。这也很好理解,比如说你一共就35个样本,当你K增大到30的时候,KNN基本上就没意义了。

所以选择K点的时候可以选择一个较大的临界K点,当它继续增大或减小的时候,错误率都会上升,比如图中的K=10。具体如何得出K最佳值的代码,下一节的代码实例中会介绍。

三.KNN特点

KNN是一种非参的惰性的算法模型。什么是非参,什么是惰性呢?

非参的意思并不是说这个算法不需要参数,而是意味着这个模型不会对数据做出任何的假设,与之相对的是线性回归(我们总会假设线性回归是一条直线)。也就是说KNN建立的模型结构是根据数据来决定的,这也比较符合现实的情况,毕竟在现实中的情况往往与理论上的假设是不相符的。

惰性又是什么意思呢?想想看,同样是分类算法,逻辑回归需要先对数据进行大量训练(tranning),最后才会得到一个算法模型。而KNN算法却不需要,它没有明确的训练数据的过程,或者说这个过程很快。

KNN算法的优势和劣势

了解KNN算法的优势和劣势,可以帮助我们在选择学习算法的时候做出更加明智的决定。那我们就来看看KNN算法都有哪些优势以及其缺陷所在!

KNN算法优点

  1. 简单易用,相比其他算法,KNN算是比较简洁明了的算法。即使没有很高的数学基础也能搞清楚它的原理。
  2. 模型训练时间快,上面说到KNN算法是惰性的,这里也就不再过多讲述。
  3. 预测效果好。
  4. 对异常值不敏感

KNN算法缺点

  1. 对内存要求较高,因为该算法存储了所有训练数据
  2. 预测阶段可能很慢
  3. 对不相关的功能和数据规模敏感

至于什么时候应该选择使用KNN算法,sklearn的这张图给了我们一个答案。

简单得说,当需要使用分类算法,且数据比较大的时候就可以尝试使用KNN算法进行分类了。

OK,本次先对KNN算法做一个介绍,下一节解析sklearn的参数,以及K值选取。

深入浅出KNN算法(一) KNN算法原理的更多相关文章

  1. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  2. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  3. 1. K近邻算法(KNN)

    1. K近邻算法(KNN) 2. KNN和KdTree算法实现 1. 前言 K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用, ...

  4. 机器学习:K-近邻算法(KNN)

    机器学习:K-近邻算法(KNN) 一.KNN算法概述 KNN作为一种有监督分类算法,是最简单的机器学习算法之一,顾名思义,其算法主体思想就是根据距离相近的邻居类别,来判定自己的所属类别.算法的前提是需 ...

  5. PCB 加投率计算实现基本原理--K最近邻算法(KNN)

    PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...

  6. 机器学习经典算法之KNN

    一.前言 KNN 的英文叫 K-Nearest Neighbor,应该算是数据挖掘算法中最简单的一种. 先用一个例子体会下. /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https://w ...

  7. 机器学习实战-K-近邻算法(kNN)

    k-近邻算法(kNN)---它的工作原理是:存在一个样本数据集合,也称做训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每 ...

  8. 第二章--k-近邻算法(kNN)

    一.k-近邻算法(kNN) 采用测量不同特征值之间的距离方法进行分类 工作原理: 存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输 ...

  9. 秒懂机器学习---k临近算法(KNN)

    秒懂机器学习---k临近算法(KNN) 一.总结 一句话总结: 弄懂原理,然后要运行实例,然后多解决问题,然后想出优化,分析优缺点,才算真的懂 1.KNN(K-Nearest Neighbor)算法的 ...

  10. 分类算法之KNN分类

    1.介绍 KNN是k nearest neighbor 的简称,即k最邻近,就是找k个最近的实例投票决定新实例的类标.KNN是一种基于实例的学习算法,它不同于贝叶斯.决策树等算法,KNN不需要训练,当 ...

随机推荐

  1. 关于数据库管理系统DBMS--关系型数据库(MySQL/MariaDB)

    数据库的结构(3种):层次,网状,关系型(用的最多): DBMS的三层模型: 视图层:面向最终用户: 逻辑层:面向程序员或DBA: 物理层:面向系统管理员: 关系型数据库管理系统——RDBMS: 主要 ...

  2. Percona XtraBackup 8.0, 安装与测试

    Percona XtraBackup 8.0 是Percona XtraBackup新推出了一个针对MySQL8.0的版本,主要是MySQL8.0在Redo 和 数据库字典方面有了新的改进. Xtra ...

  3. SQL 高效运行注意事项(二)

    SQL Server高效运行总的来说有两种方式: 一. 扩容,提高服务器性能,显著提高CPU.内存,解决磁盘I/O瓶颈.硬件的提升是立竿见影的,而且是风险小,在硬件更新换代非常快的年代, 当SQLSe ...

  4. kettle 备注

    1. 基本组成 1.1 spoon: 一个可视化的工具,用于编辑kettle ETL的任务脚本 1.2 span: 用以命令行方式执行spoon的转换 1.3 kitchen: 用以命令行方式执行sp ...

  5. cxf 整合 spring 时 java.lang.VerifyError异常

    异常信息主要有两个,Falling off the end of the code 和 illegal instruction found at offset 1: java.lang.VerifyE ...

  6. .NET之微信消息模板推送

    最近在项目中使用到了微信消息模板推送的功能,也就是将对应的消息推送到对应的用户微信上去,前提是你必须要有一个微信公众号并且是付费了的才会有这个功能,还有就是要推送的用户必须是的关注了你的微信公众号的. ...

  7. Java转PHP的心路历程

    首先,我要批评一下自己,已经好久没发博客了.总是拿奇奇怪怪的理由来妨碍自己写博客. emmmm,现在心里舒服一点了. 前提 在2018年的11月7号,我从广州跳槽到一个三线的小城市工作.跳槽原因比较羞 ...

  8. 每日分享!~ JavaScript数组去重

    数组去重 数组去重在很多面试的过程中,都是大题出现!网络上出现了很多数组去重的方式.多数的达到了12种以上. 今天我只给大家介绍两种我比较喜欢,比较认可!入手简单的-能解决自己的问题就可以了 好了 , ...

  9. 如何面对被抛弃的System.Data.OracleClient

    Visual Studio2012连接访问ORACLE数据库 近些年因工作内容的转变,很少去编码了.一些简单的需求使用VS+SQL SERVER这对老搭档便可快捷而舒服的搞定.只是近日需要管理一些OR ...

  10. 从PRISM开始学WPF(五)MVVM(一)ViewModel-更新至Prism7.1

    0x5 MVVM [7.1updated]截止到目前,我们看到7.1的更新主要在三个地方 PrismApplication ,并且不再使用Bootstrapper 更新了unity,现在使用prism ...