Description

  除法表达式有如下的形式: X1/X2/X3.../Xk 其中Xi是正整数且Xi<=1000000000(1<=i<=k,K<=10000) 除法表达式应当按照从左到右的顺序求,例如表达式1/2/1/2的值为1/4.但可以在表达式中国入括号来改变计算顺序,例如(1/2)/(1/2)的值为1.现给出一个除法表达式E,求是告诉是否可以通过增加括号来使其为E',E'为整数

Input

  先给出一个数字D,代表有D组数据. 每组数据先给出一个数字N,代表这组数据将有N个数。 接下来有N个数,分别代表X1,X2,X3,...,XN

Output

  如果能使得表达式的值为一个整数,则输出YES.否则为NO

Sample Input

2
4
1
2
1
2
3
1
2
3

Sample Output

YES
NO

HINT

Source

Solution

  第一个数必为分子,第二个数必为分母,剩下的数既可以是分子又可以是分母,所以当表达式形如$X_1/(X_2/X_3/\cdots/X_N)$时最有可能是整数

  判断$X_2$能否被其他数的积整除即可(你不会傻到把这些数乘起来吧)

 #include <bits/stdc++.h>
using namespace std;
int a[]; int gcd(int x, int y)
{
return y ? gcd(y, x % y) : x;
} int main()
{
int d, n, t;
scanf("%d", &d);
while(d--)
{
scanf("%d", &n);
for(int i = ; i <= n; ++i)
scanf("%d", a + i);
if(n == )
{
puts("YES");
continue;
}
swap(a[], a[]);
for(int i = ; i <= n && a[] > ; ++i)
t = gcd(a[i], a[]), a[] /= t;
if(a[] == ) puts("YES");
else puts("NO");
}
return ;
}

[BZOJ1385] [Baltic2000] Division expression (数学)的更多相关文章

  1. bzoj1385: [Baltic2000]Division expression

    欧几里得算法.可以发现规律,a[2]作为分母,其他作为分子,必定是最好的选择.判断是否为整数即可. #include<cstdio> #include<cstring> #in ...

  2. BZOJ 1385: [Baltic2000]Division expression

    题目 1385: [Baltic2000]Division expression Time Limit: 5 Sec  Memory Limit: 64 MB Description 除法表达式有如下 ...

  3. 【BZOJ】1385 [Baltic2000]Division expression

    [算法]欧几里德算法 [题解]紫书原题 #include<cstdio> #include<algorithm> using namespace std; ; int T,t, ...

  4. bzoj 1385: [Baltic2000]Division expression【脑洞】

    加括号再去括号就是除变加,显然尽可能多的除变加是最优的,然后发现唯一不能变成乘数的是第二个数,所以把其他数乘起来mod第二个数,如果是0就是YES,否则说明最后不能除尽,就是NO #include&l ...

  5. 「BZOJ1385」「Baltic2000」Division expression 解题报告

    Division expression Description 除法表达式有如下的形式: \(X_1/X_2/X_3.../X_k\) 其中Xi是正整数且\(X_i \le 1000000000(1 ...

  6. 【BZOJ】【1385】【Baltic2000】Division expression

    欧几里得算法 普通的求个gcd即可……思路题 因为要求尽量是整数……所以 $\frac{x_1}{x_2*x_3*x_4*....*x_n}$是最大的结果了,因为$x_2$必须为分母,$x_1$必须为 ...

  7. [bzoj1385]Division expression

    容易发现a2一定是分母,且容易做到其余都是分子,因此相当于判定a2能否整除a1*a3*--*an,不断让a2除以其与其他数的gcd即可(注意特判n=1) 1 #include<bits/stdc ...

  8. LightOj1385 - Kingdom Division(数学几何题)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1385 题意:下图中已知面积 a b c 求 d; 如果d的面积不确定,输出-1. 连接 ...

  9. LightOJ - 1214-Large Division(数学,同余)

    链接: https://vjudge.net/problem/LightOJ-1214 题意: Given two integers, a and b, you should check whethe ...

随机推荐

  1. Linux用于嵌入式

    步骤1:Linux工具和项目布局 每个嵌入式软件设计都从选择合适的工具开始. 工具链是一组连接(或链接)在一起的软件开发工具,它包含诸如GNU编译器集合(GCC).binutils(一组包括连接器.汇 ...

  2. ConcurrentHashMap源码分析(一)

    本篇博客的目录: 前言 一:ConcurrentHashMap简介 二:ConcurrentHashMap的内部实现 三:总结 前言:HashMap很多人都熟悉吧,它是我们平时编程中高频率出现的一种集 ...

  3. 开启Nginx的目录文件列表功能

    ngx_http_autoindex_module  此模块用于自动生成目录列表,ngx_http_autoindex_module只在 ngx_http_index_module模块未找到索引文件时 ...

  4. jq模仿雨滴下落的动画

    效果如图: 实现思路:定时器每隔x秒生成宽高.下落速度(即动画执行时间).left随机的div. 1.CSS: body{ overflow: hidden;/*这是为了防止出现滚动条*/ } .co ...

  5. .NET中的按需加载/延迟加载 Lazy<T>

    业务场景: 在项目开发中,经常会遇到特定的对象使用的加载问题,有的实例对象我们创建之后并非需要使用,只是根据业务场景来调用,所以可能会导致很多无效的实例加载 延迟初始化出现于.NET 4.0,主要用于 ...

  6. 老男孩Python全栈开发(92天全)视频教程 自学笔记16

    day16课程内容: 装饰器: def outer(): x=10 def inner(): print(x) return innerouter()() #inner 是局部变量,10闭包:如果在一 ...

  7. UVA-818 dfs + 位运算

    暴力枚举一些圆环,将这些圆环解开,看能否成为单链.判断单链的三个条件: 除了这些删除的圆环之外,其他圆环还连接着的圆环不能超过两个. 剩下的环没有连成圈. 剩下的圆环共分成m堆,每堆之间无连接,m必须 ...

  8. Docker系列一:Docker基本概念及指令介绍

    1. Docker是什么? Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用 ...

  9. JVM笔记5-对象的访问定位。

    java虚拟机中指定一个栈内存的引用指向了堆内存中的对象.这样说只是笼统的说法.而指向堆内存中的对象就一定是栈引用所需要的那个对象吗?其实并不定. 这就需要知道对象的访问定位方式有两种: 1.使用句柄 ...

  10. MySQL InnoDB表压缩

    MySQL InnoDB表压缩 文件大小减小(可达50%以上) ==> 查询速度变快(count * 约减少20%以上时间) 如何设置mysql innodb 表的压缩: 第一,mysql的版本 ...