复数重载 与 FFT

1.复数重载:

重载了复数的运算,即重载了复数的加减乘以及赋初值。

struct Complex{          //复数的重载
double r,i;
IL Complex(){r = 0; i = 0;}
IL Complex(RG double a,RG double b){r = a; i = b;}
IL Complex operator +(Complex B){ return Complex(r+B.r,i+B.i); }
IL Complex operator -(Complex B){ return Complex(r-B.r,i-B.i); }
IL Complex operator *(Complex B){
return Complex(r*B.r-i*B.i , r*B.i+i*B.r);
}
};

其中\(f.r\)为实部 ,\(f.i\)为虚部。

2.FFT算法:

计算多项式\(f_1\)*\(f_2\) == \(f_3\)的算法,

时间复杂度\(O(n\ logn)\) , 空间最好开\(O(3n)\)到\(O(4n)\)左右;

Complex f1[_],f2[_],X,Y; int f3[_];  //f3储存卷积的系数.
const double PI = acos(-1); IL void Init(){ //读入数据,预处理.
cin >> n >> m;
for(RG int i = 0; i <= n; i ++)cin >> f1[i].r;
for(RG int j = 0; j <= m; j ++)cin >> f2[j].r; //读入两个多项式
m += n; l = 0;
for(n = 1; n <= m; n<<=1)l++;
//此时m保存卷积的长度,n等于二进制补全后 数列长度+1 .
//Rader预处理:
for(RG int i = 0; i < n; i ++)R[i] = (R[i>>1]>>1) | ((i&1)<<(l-1));
} IL void FFT(Complex *P , int opt){
for(RG int i = 0; i < n; i ++)
if(i < R[i]) swap(P[i] , P[R[i]]); //Rader 排序
for(RG int i = 1; i < n; i<<=1){
Complex W(cos(PI/i),opt*sin(PI/i));
for(RG int p = i<<1 , j = 0; j < n; j += p){
Complex w(1,0);
for(RG int k = 0; k < i; k ++,w = w*W){
X = P[j + k] , Y = w*P[j + k + i];
P[j + k] = X + Y; P[j + k + i] = X - Y;
}
}
}
if(opt == -1) for(RG int i = 0; i < n; i ++)P[i].r /= n;
} int main(){
Init(); //计算f1*f2
FFT(f1,1); FFT(f2,1);
for(RG int i = 0; i <= n; i ++)f1[i] = f1[i]*f2[i];
FFT(f1,-1); //最后结果存在f1中.
for(RG int i = 0; i <= m; i ++)f3[i] = (int)(f1[i].r+0.5));
return 0;
}

FFT && 复数重载的更多相关文章

  1. C++复数运算 重载

    近期整理下很久前写的程序,这里就把它放在博文中了,有些比较简单,但是很有学习价值. 下面就是自己很久前实现的复数重载代码,这里没有考虑特殊情况,像除法中,分母不为零情况. #include <i ...

  2. FFT算法小结

    都应该知道多项式是什么对吧(否则学什么多项式乘法) 我们用\(A(x)\)表示一个\(n-1\)次多项式,即\(A(x)=\sum_{i=0}^{n-1} {a_i}*x^i\) 例如\(A(x)=x ...

  3. 多项式相关&&生成函数相关&&一些题目(updating...)

    文章目录 多项式的运算 多项式的加减法,数乘 多项式乘法 多项式求逆 多项式求导 多项式积分 多项式取对 多项式取exp 多项式开方 多项式的除法/取模 分治FFT 生成函数 相关题目 多项式的运算 ...

  4. 【C++】类-多态

    类-多态 目录 类-多态 1. 基本概念 2. 运算符重载 2.1 重载为类的成员函数 2.2 重载为非成员函数 3. 虚函数 4. 抽象类 5. override与final 1. 基本概念 多态性 ...

  5. C++复数类对除法运算符 / 的重载

    C8-1 复数加减乘除 (100.0/100.0 points) 题目描述 求两个复数的加减乘除. 输入描述 第一行两个double类型数,表示第一个复数的实部虚部 第二行两个double类型数,表示 ...

  6. C++习题 复数类--重载运算符2+

    Description 定义一个复数类Complex,重载运算符"+",使之能用于复数的加法运算.参加运算的两个运算量可以都是类对象,也可以其中有一个是整数,顺序任意.例如,c1+ ...

  7. C++习题 复数类--重载运算符+

    Description 定义一个复数类Complex,重载运算符"+",使之能用于复数的加法运算.将运算符函数重载为非成员.非友元的普通函数.编写程序,求两个复数之和. Input ...

  8. F2833x 调用DSP函数库实现复数的FFT的方法

    转载自:http://blog.csdn.net/aeecren/article/details/67644363:个人觉得写的很详细,值得一看 在数字信号处理中,FFT变换是经常使用到的,在DSP中 ...

  9. 15.C++-操作符重载、并实现复数类

    首先回忆下以前学的函数重载 函数重载 函数重载的本质为相互独立的不同函数 通过函数名和函数参数来确定函数调用 无法直接通过函数名得到重载函数的入口地址 函数重载必然发生在同一个作用域中 类中的函数重载 ...

随机推荐

  1. JaveScript函数(JS知识点归纳六)

    1.函数的基本使用 a)作用:代码的复用,灵活性比较强 b)声明方式:function 名 (形参){函数体} c)调用: 名(实参); d)封装函数--书写一个函数的结构,而且放入一些功能,在需要使 ...

  2. Java经典编程题50道之三

    打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例如:153是一个"水仙花数",因为153=1的三次 ...

  3. break的标签的用法

    package study; public class breakdemo { public static void main(String[] args) { System.out.println( ...

  4. Sphinx下载、安装、配置、Hello World、文档阅读

    sphinx下载.安装.配置.Hello World.查看文档

  5. Java语言的特性

    一.跨平台 借助虚拟机,程序不经修改即可在不同硬件或者软件平台上运行.源代码级(C,C++源码会重新编译),目标代码级(Java). 二.面向对象 以对象为基本单位,使得程序开发变得简单易用,拓展更方 ...

  6. kubernetes 命令使用

    学会命令的查找和使用,而不是死记命令,记命令不如提高英文水平 1.kubernetes环境搭建完成后,kubernetes环境搭建参考http://www.cnblogs.com/sosogengdo ...

  7. python内置函数-compile()

    python的内置函数 compile()--编译. 这个函数有什么用呢? 一个最简单的例子, 就是我们的代码, 会被解释器读取,解释器读取后的其实是字符串, 然后通过compile编译后, 又转换成 ...

  8. vs2017密钥

    Enterprise: NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Professional: KBJFW-NXHK6-W4WJM-CRMQB-G3CDH

  9. JVM 指令

    1.Demo 2.Class 文件说明 2.1 Class文件结构 2.2 jvm type, method signature 2.3 泛型表示 3.方法说明 3.1 方法结构 3.1.1 Thre ...

  10. FULL HD

    FULL HD(全高清)是Full High Definition的简写,是指物理分辨率高达1920×1080显示(包括1080i和1080P),其中i(interlace)是指隔行扫描:P(Prog ...