逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions)
1.首先先定义进行卷积的参数:
- 输入特征图为高宽一样的Hin*Hin大小的x
- 卷积核大小kernel_size
- 步长stride
- padding填充数(填充0)
- 输出特征图为Hout*Hout大小的y
计算式子为:
Hout = floor( Hin + 2*padding - kernel_size / stride) + 1
2.然后实现上面的卷积的转置卷积
定义其参数为:
- 输入特征图为高宽一样的Hout*Hout大小的y
- 卷积核大小kernel_size
- 步长stride
- paddingnew 填充数(填充0)
- 输出特征图为Hin*Hin大小的x
逆卷积的过程主要分两步:
- 对输入的特征图y进行变换,得到新的特征图ynew
- 内部变换,与卷积时设置的stride相关
- 外部变换,与卷积时设置的padding相关
- 根据得到的特征图进行卷积即可
1)对输入的特征图y进行变换,得到新的特征图ynew
1》内部变换
当卷积时设置的stride>1时,将对输入的特征图y进行插值操作(interpolation)。
即需要在输入的特征图y的每个相邻值之间插入(stride-1)行和列0,因为特征图中能够插入的相邻位置有(height-1)个位置,所以此时得到的特征图的大小由Hout*Hout(Hout即height) 变为新的 Hout_new*Hout_new,即[Hout + (stride-1) * (Hout-1)] * [Hout + (stride-1) * (Hout-1)]
2》外部变换
为了实现由Hout*Hout大小的y逆卷积得到Hin*Hin大小的x,还需要设置paddingnew的值为(kernel_size - padding - 1),这里的padding是卷积操作时设置的padding值
所以计算式子变为:
Hin = floor( [Hout_new + 2*paddingnew - kernel_size] / stride') + 1
⚠️该式子变换后,定义向下取整的分母stride'值为定值1
Hout_new和paddingnew的值代入上面的式子,即变为:
Hin = floor( Hout + (stride-1) * (Hout-1) + 2*(kernel_size - padding - 1) - kernel_size) + 1
化简为:
Hin = floor( (Hout - 1) * stride - 2*padding + kernel_size - 1) + 1
= (Hout - 1) * stride - 2*padding + kernel_size
这样式子使的卷积Conv2d和逆卷积ConvTranspose2d在初始化时具有相同的参数,而在输入和输出形状方面互为倒数。
所以这个式子其实就是官网给出的式子:

可见这里没考虑output_padding
output_padding的作用:可见nn.ConvTranspose2d的参数output_padding的作用
3.下面举例说明
https://github.com/vdumoulin/conv_arithmetic#convolution-arithmetic
1)当stride=1时,就不会进行插值操作,只会进行padding,举例说明:
卷积操作为:
蓝色为输入特征图Hin*Hin=4*4,绿色为输出特征图Hout*Hout=2*2,卷积核kernel_size=3, stride=1
根据式子Hout = floor( Hin + 2*padding - kernel_size / stride) + 1
可得padding=0

其对应的逆卷积操作为:
蓝色为输入特征图Hout*Hout=2*2,绿色为输出特征图Hin*Hin=4*4,卷积核kernel_size=3, stride=1
卷积时的padding=0
将这些值代入上面的式子Hin = (Hout - 1) * stride - 2*padding + kernel_size
果然输入Hout*Hout=2*2能得到输出Hin*Hin=4*4
变形过程为:
paddingnew = kernel_size - padding -1 = 3 -0 -1 = 2
所以可见下方的蓝色最后的大小为7*7 = Hout + 2*paddingnew = 2 + 2*2 = 6

⚠️这里可见是有padding的,为什么定义是为no padding呢?
这是因为它对应的卷积操作的padding=0
1)当stride=2时,进行插值和padding操作,举例说明:
卷积操作为:
蓝色为输入特征图Hin*Hin=5*5,绿色为输出特征图Hout*Hout=3*3,卷积核kernel_size=3, stride=2
根据式子Hout = floor( Hin + 2*padding - kernel_size / stride) + 1
可得padding=1

其对应的逆卷积操作为:
蓝色为输入特征图Hout*Hout=3*3,绿色为输出特征图Hin*Hin=5*5,卷积核kernel_size=3,stride=2
卷积时的padding=1
将这些值代入上面的式子Hin = (Hout - 1) * stride - 2*padding + kernel_size
果然输入Hout*Hout=3*3能得到输出Hin*Hin=5*5
变形操作为:
Hout_new = Hout + (stride-1) * (Hout-1) = 3 + (2-1)*(3-1) = 5
paddingnew = kernel_size - padding -1 = 3 -1 -1 = 1
所以可见下方的蓝色最后的大小为7*7 = Hout_new + 2*paddingnew = 5 + 2*1 = 7

⚠️因为这里的逆卷积对应的卷积操作的padding= 1,所以这里不是no padding,而是padding
逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions)的更多相关文章
- Elasticsearch BM25相关度算法超详细解释
Photo by Pixabay from Pexels 前言:日常在使用Elasticsearch的搜索业务中多少会出现几次 "为什么这个Doc分数要比那个要稍微低一点?".&q ...
- .htaccess语法之RewriteCond与RewriteRule指令格式详细解释
htaccess语法之RewriteCond与RewriteRule指令格式详细解释 (2012-11-09 18:09:08) 转载▼ 标签: htaccess it 分类: 网络 上文htacc ...
- cookie的详细解释
突然看到网页上中英文切换的效果,不明白怎么弄得查了查 查到了cookie 并且附有详细解释 就copy留作 以后温习 http://blog.csdn.net/xidor/article/detail ...
- tar命令的详细解释
tar命令的详细解释 标签: linuxfileoutputbashinputshell 2010-05-04 12:11 235881人阅读 评论(12) 收藏 举报 分类: linux/unix ...
- Linux学习笔记15——GDB 命令详细解释【转】
GDB 命令详细解释 Linux中包含有一个很有用的调试工具--gdb(GNU Debuger),它可以用来调试C和C++程序,功能不亚于Windows下的许多图形界面的调试工具. 和所有常用的调试工 ...
- C语言 - 结构体(struct)比特字段(:) 详细解释
结构体(struct)比特字段(:) 详细解释 本文地址: http://blog.csdn.net/caroline_wendy/article/details/26722511 结构体(struc ...
- 姿势体系结构的详细解释 -- C
我基本上总结出以下4部分: 1.问题的足迹大小. 2.字节对齐问题. 3.特别保留位0. 4.这种结构被存储在存储器中的位置. #include <stdio.h> #include &l ...
- Java - 面向对象(object oriented)计划 详细解释
面向对象(object oriented)计划 详细解释 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24058107 程序包括 ...
- 设计模式 - 迭代模式(iterator pattern) Java 迭代器(Iterator) 详细解释
迭代模式(iterator pattern) Java 迭代器(Iterator) 详细解释 本文地址: http://blog.csdn.net/caroline_wendy 參考迭代器模式(ite ...
随机推荐
- linux shell 备注(一)
1.特殊字符 #!/bin/bash # $表示当前PID ID echo $$ # $n是shell脚本的参数,当0是第一个参数,即文件名 # $#是shell当前脚本的参数个数 # 例如:sh03 ...
- .NET程序员不加班——写在《华为工程师猝死,36岁,22月无休》之后
我首先承认,有点标题党.因为这是我这个十年老码农——过了年就整整11年了,o(╥﹏╥)o——的个人观察.经验所得.如果有仍在加班的.NET童鞋,不要打我.一定要打的话,只有一个要求:不要打脸! 写这篇 ...
- 图的BFS----迷宫问题
题目描述: ...11111111111111111111111111111 11.111111........1111111111.1111 11.111111..111.11111111..... ...
- Java核心基础学习(一)--- 2019年1月
1.对比Exception和Error,运行时异常与一般异常 Exception 和 Error 都继承了 Throwable 类,在 Java 中只有 Throwable 类才能 thorw(抛出) ...
- JVM回收算法
根搜索算法 原理:设立若干种根对象,当任何一个根对象到某一个对象均不可达时,则认为这个对象是可以被回收的.一般是对象持有的引用指向该对象不可达 在JAVA语言中,可以当做GC roots的对象有以下几 ...
- Virtual Box虚拟机Ubuntu18.X系统安装及Mysql基本开发配置
Linux简介 什么是 Linux? Linux:世界上不仅只有一个 Windows 操作系统,还有 Linux.mac.Unix 等操作系统.桌面操作系统下 Windows 是霸主,而 Linux ...
- 内联汇编获取Kernaer32基址.
DWORD GetKerner32ImageBase() { DWORD nIMageBase = 0; __asm { xor edx,edx mov ecx, fs:[0x30]; mov ecx ...
- C#语法——反射,架构师的入门基础。
前言 编程其实就是写代码,而写代码目的就是实现业务,所以,语法和框架也是为了实现业务而存在的.因此,不管多么高大上的目标,实质上都是业务. 所以,我认为不要把写代码上升到科学的高度.上升到艺术就可以了 ...
- DS控件库 一个简单的血条颜色渐变方案
Private Sub DS按钮1_ButtonClick(Sender As Object) Handles DS按钮1.ButtonClick Dim T As New Threading.Thr ...
- c#中如何使用到模糊查询
c#中如何使用到模糊查询,先举个最简单实用的例子,可在vs控制台应用程序中输出: 定义实体类: public class Student { public int ...