在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

输入:n*c*h*w

输出:n*c*h*w

常用的激活函数有sigmoid, tanh,relu等,下面分别介绍。

1、Sigmoid

对每个输入数据,利用sigmoid函数执行操作。这种层设置比较简单,没有额外的参数。

层类型:Sigmoid

示例:

layer {
name: "encode1neuron"
bottom: "encode1"
top: "encode1neuron"
type: "Sigmoid"
}

2、ReLU / Rectified-Linear and Leaky-ReLU

ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。

标准的ReLU函数为max(x, 0),当x>0时,输出x; 当x<=0时,输出0

f(x)=max(x,0)

层类型:ReLU

可选参数:

  negative_slope:默认为0. 对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数时,就不再设置为0,而是用原始数据乘以negative_slope

layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}

RELU层支持in-place计算,这意味着bottom的输出和输入相同以避免内存的消耗。

3、TanH / Hyperbolic Tangent

利用双曲正切函数对数据进行变换。

层类型:TanH

layer {
name: "layer"
bottom: "in"
top: "out"
type: "TanH"
}

4、Absolute Value

求每个输入数据的绝对值。

f(x)=Abs(x)

层类型:AbsVal

layer {
name: "layer"
bottom: "in"
top: "out"
type: "AbsVal"
}

5、Power

对每个输入数据进行幂运算

f(x)= (shift + scale * x) ^ power

层类型:Power

可选参数:

  power: 默认为1

  scale: 默认为1

  shift: 默认为0

layer {
name: "layer"
bottom: "in"
top: "out"
type: "Power"
power_param {
power: 2
scale: 1
shift: 0
}
}

6、BNLL

binomial normal log likelihood的简称

f(x)=log(1 + exp(x))

层类型:BNLL

layer {
name: "layer"
bottom: "in"
top: "out"
type: “BNLL”
}

转 Caffe学习系列(4):激活层(Activiation Layers)及参数的更多相关文章

  1. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  2. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  3. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  4. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  5. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  6. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  7. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  8. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  9. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

  10. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

随机推荐

  1. 提取位于<title>...</title>内的文本标题内容

    #vim title.txt <title>nhlinkin</title> # cat title.txt  | sed 's:.*<title>\([^< ...

  2. 面向对象_04【关键字:super使用】

    super关键字:解决当子类重写父类对象方法后,子类对象无法访问父类的成员1,调用父类成员变量和方法 super.成员变量 super.成员方法([参数1,参数2.......])Example: / ...

  3. pytho字符串处理内置方法一览表

    序号 方法及描述 1 capitalize()将字符串的第一个字符转换为大写 2 center(width, fillchar) 返回一个指定的宽度 width 居中的字符串,fillchar 为填充 ...

  4. CentOS(Linux)下安装dmidecode包

    安装代码: yum install dmidecode 安装完成后,查看总体信息: dmidecode 查看服务器类型,测试环境为DELL R610: dmidecode -s system-prod ...

  5. Ubuntu14.04server + LNMP + Zabbix3.4安装教程

    此教程使用的编辑器是vim LNMP安装很简单,跟着步骤走没有问题,就不粘图片了. 安装MYSQL (1)开始安装:apt-get install mysql-server libmysqld-dev ...

  6. MySQL递归的替代方案

    类似查出某个机构下所有的子机构,可用递归的方式实现.但MySQL不支持递归,可以考虑用如下的方式来实现递归调用. 第一种,临时表方式,使用函数每次查出子机构,再可以和其他表联查. 第二种,新建一张表, ...

  7. BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]

    3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...

  8. Vim【学习笔记】

    [2017-02-04] 先放几个比较好的资料,看这些资料就好了: 1.Vim入门基础 http://www.jianshu.com/p/bcbe916f97e1 2.vim配置 http://blo ...

  9. Delegate &&Lambda

    匿名函数及委托的使用: public delegate void NoReturnNoParaOutClass();//delegate can be defined in class or out ...

  10. Asp.Net Core MailKit 完美附件(中文名、长文件名)

    最近在使用MailKit组件发送邮件,看了一些博客其实还是蛮简单的,但是发送附件的时候却产生了不小的问题,附件的中文名字是乱码的,或者附件的名字过长就会无效,附件的名字在QQ邮箱中会变成类似 tcmi ...