吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)
可能因为Andrew Ng用的是python3,而我是python2.7的缘故,我发现了坑.如下:
在辅助文件tf_utils.py中的random_mini_batches(X, Y, mini_batch_size = 64, seed = 0)函数中,把 math.floor(m/mini_batch_size)
改成 int(math.floor(m/mini_batch_size))
就ok了.
就是下面的这个函数:
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
mini_batch_size - size of the mini-batches, integer
seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
m = X.shape[1] # number of training examples
mini_batches = []
np.random.seed(seed)
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
# num_complete_minibatches = math.floor(m/mini_batch_size) # original <------ 坑在这
num_complete_minibatches = int(math.floor(m/mini_batch_size)) # <--------修改后
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)的更多相关文章
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第1课第3周编程作业记录(2分类1隐层nn)
2分类1隐层nn, 作业默认设置: 1个输出单元, sigmoid激活函数. (因为二分类); 4个隐层单元, tanh激活函数. (除作为输出单元且为二分类任务外, 几乎不选用 sigmoid 做激 ...
- 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...
- 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- cousera 吴恩达 深度学习 第一课 第二周 作业 过拟合的表现
上图是课上的编程作业运行10000次迭代后,输出每一百次迭代 训练准确度和测试准确度的走势图,可以看到在600代左右测试准确度为最大的,74%左右, 然后掉到70%左右,再掉到68%左右,然后升到70 ...
- Coursera 吴恩达 深度学习 学习笔记
神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...
随机推荐
- 错误解决:HibernateSystemException-HHH000142: Javassist Enhancement failed
今天做项目报了一个错误 错误的原因是: 有级联查询的时候,一对多,多对一配置时要考虑默认延迟加载的问题,需要把延迟加载关闭. 然后就能正确查询出结果了 补充知识: 延迟加载表现在:比如:我们要查询 ...
- POJ2318【判断点在直线哪一侧+二分查找区间】
题目大意:给定一个矩形和一些线段,线段将矩形分割为从左至右的若干部分,之后给出一些玩具的坐标,求每个部分中玩具的数量 #include<cstdio> #include<cstdli ...
- POJ-3255 Roadblocks---Dijkstra队列优化+次短路
题目链接: https://vjudge.net/problem/POJ-3255 题目大意: 给无向图,求1到n的次短路长度 思路: 由于边数较多,应该使用dijkstra的队列优化 用d数组存储最 ...
- Spring基础复习
Spring IOC 使用注解实现Bean管理 注解类型: @Component:spring定义的通用注解,可用于注解任何bean @Repository, @Service,@Controller ...
- 20 个 Laravel Eloquent 必备的实用技巧
Eloquent ORM 看起来是一个简单的机制,但是在底层,有很多半隐藏的函数和鲜为人知的方式来实现更多功能.在这篇文章中,我将演示几个小技巧. 1. 递增和递减 要代替以下实现: $article ...
- Apache 安装与配置(WIN10)
本地坏境:windows 10 Pro 1709 Apache版本:httpd-2.4.32-Win64-VC15 Apache下载地址:https://www.apachelounge.com/do ...
- HTML笔记05------AJAX
AJAX初探01 AJAX概念 概念:即"Asynchronous JavaScript And XML" 通过在后台与服务器进行少量数据交换,AJAX可以使网页实现异步更新.这意 ...
- [LeetCode] Repeated String Match 重复字符串匹配
Given two strings A and B, find the minimum number of times A has to be repeated such that B is a su ...
- [LeetCode] Diameter of Binary Tree 二叉树的直径
Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...
- 使用数据库乐观锁解决高并发秒杀问题,以及如何模拟高并发的场景,CyclicBarrier和CountDownLatch类的用法
数据库:mysql 数据库的乐观锁:一般通过数据表加version来实现,相对于悲观锁的话,更能省数据库性能,废话不多说,直接看代码 第一步: 建立数据库表: CREATE TABLE `skill_ ...