第三部分主要讲的是倍增思想及其应用。
在Day3的整理中,我简要提到了倍增思想,我们来回顾一下。
倍增是根据已经得到的信息,将考虑的范围扩大一倍,从而加速操作的一种思想,它在变化规则相同的情况下,加速状态转移。
运用倍增方法预处理信息,可以加速询问。
如果题目的数据范围极大,线性时间也不够用,那就可以考虑倍增思想了。
 
1.快速幂
计算 a^x % p。
暴力是显然的,TLE。
其实就是想办法把x拆开。考虑先把它表示成二进制形式,我们可以用不超过logx个f[i]拼出我们想要的答案。
在x的二进制表示中,1表示“取”。二进制中的每一个1都表示2的i次方。
比如说计算a^100,100的二进制是01100100,可以看出在2^2,2^5,2^6位置是1,而这些数分别对应4,32,64,那么只需要把a^100拆分成a^64*a^32*a^4即可。
实现很容易,每次提取处最低的二进制位再除以2即可。
long long int fast_pow(long long int a,long long int x,long long int p){
long long int ans = ;
long long int sum = a % p;
for (;x;x>>=,sum = sum*sum%p)
if (x&)
ans = ans*sum%p;
return ans;
}
 
2.树上祖先
给定一棵N个节点的树,告诉你每个节点的父亲是谁,做Q次询问,每次询问某个点的k倍祖先是谁。
暴力做法显然,O(QN)。
有一种优化是预处理出每个点向后跳1~B步的点是哪个,每次询问B步B步地跳,当B = √N时,复杂度取得最优O(N√N)。
改进一下这个优化,预处理出每个点向父亲跳2^i步是谁,这样每次至多跳logN步就能跳到目标位置。
假设跳k步,考虑k的二进制表示,二进制中的每一个1都表示2^i,拼凑k。
每跳一步相当于删去一个1.
我们设f[i][j]为第i个元素向父亲跳2^j步是谁,则边界是f[i][0]为第i个元素的父亲。
转移:f[i][j] = f[f[i][j]-1][j-1]
for (int i=;i<=N;i++)
  for (int j=;i+(<<i)-<=N,i++)
    f[i][j] = f[f[i][j]-][j-];
查询:

int q(int x,int k){
  for (int i=N;i>=;i--)
    if (k & ( << i))
      x = f[x][i];
  return x;
}
3.倍增LCA
参阅Day3整理
 
4.ST表
用来维护区间信息。对于重复信息只会贡献一次的信息,我们可以用ST表来实现高效查询。
还是倍增思想,预处理每个位置向后2^i长度的信息,假设我们要查询的是[L,R],可以通过两段长度为2^k长度的区间覆盖[L,R],k = floor(log(R-L+1))
以区间最小值举例,预处理时先枚举i再枚举j,f[i][j] = min(f[i-1][j],f[i-1][j+(1 << i-1)])
查询时,ans = min(f[k][l],f[k][r-(1 << k)+1])
ST表可以维护最大值,最小值,gcd等,但不能维护求和等信息,因为这样会重复计算。同时也不支持修改,所以是一个比较弱的数据结构。
不过,ST表可以完成树上LCA的查询。用它记录树的欧拉序,也就是说,在每次遍历到这个节点时都将其记录下来。
所谓欧拉序,就是记录你DFS一棵树的时候的遍历轨迹。
比如说这样一棵树:

 
它的欧拉序是ABDBACECFCA
可以知道,对于一个有N个节点的树,其欧拉序的长度为2N-1。
记x第一次出现的位置为fir[x],有一个结论:
对于两个节点u,v,欧拉序[fir[u],fir[v]]这段区间中的深度最浅的那个节点,是lca(u,v)。
因为u,v之间的路径上的节点都会出现在这段区间。深度比u,v的lca的小的节点不会出现在这段区间。维护欧拉序中的每个位置,向后2^i的区间中深度最浅的节点是谁。
查询方式和刚才上边那个例子类似,用那个做法查询[fir[u],fir[v]]这一段的最小值就好。
 
 
 
 
 

夏令营讲课内容整理 Day 6 Part 3.的更多相关文章

  1. 夏令营讲课内容整理 Day 7.

    Day7是夏令营的最后一天,这一天主要讲了骗分技巧和往年经典的一些NOIP试题以及比赛策略. 这天有个小插曲,上午的day7T3是一道和树有关的题,我是想破脑袋也想不出来,正解写不出来就写暴力吧,暴力 ...

  2. 夏令营讲课内容整理 Day 3.

    本日主要内容是树与图.   1.树 树的性质 树的遍历 树的LCA 树上前缀和   树的基本性质: 对于一棵有n个节点的树,必定有n-1条边.任意两个点之间的路径是唯一确定的.   回到题目上,如果题 ...

  3. 夏令营讲课内容整理Day 0.

    今年没有发纸质讲义是最气的.还好我留了点课件. 第一次用这个估计也不怎么会用,但尝试一下新事物总是好的. 前四天gty哥哥讲的内容和去年差不多,后三天zhn大佬讲的内容有点难,努力去理解吧. 毕竟知识 ...

  4. 夏令营讲课内容整理 Day 6 Part 2.

    Day 6的第二部分,数论 数论是纯粹数学的分支之一,主要研究整数的性质   1.一些符号: a mod b 代表a除以b得到的余数 a|b a是b的约数 floor(x) 代表x的下取整,即小于等于 ...

  5. 夏令营讲课内容整理 Day 6 Part 1.

    Day6讲了三个大部分的内容. 1.STL 2.初等数论 3.倍增   Part1主要与STL有关. 1.概述 STL的英文全名叫Standard Template Library,翻译成中文就叫标准 ...

  6. 夏令营讲课内容整理 Day 5.

    DP专场.. 动态规划是运筹学的一个分支, 求解决策过程最优化的数学方法. 我们一般把动态规划简称为DP(Dynamic Programming)   1.动态规划的背包问题 有一个容量为m的背包,有 ...

  7. 夏令营讲课内容整理 Day 4.

    本日主要内容就是搜索(打暴力 搜索可以说是OIer必会的算法,同时也是OI系列赛事常考的算法之一. 有很多的题目都可以通过暴力搜索拿到部分分,而在暴力搜索的基础上再加一些剪枝优化, 就有可能会拿到更多 ...

  8. 夏令营讲课内容整理 Day 2.

    本日主要内容是并查集和堆. 并查集 并查集是一种树型的数据结构,通常用来处理不同集合间的元素之间的合并与查找问题.一个并查集支持三个基本功能:合并.查找和判断.举一个通俗的例子,我和lhz认识,lhz ...

  9. 夏令营讲课内容整理Day 1.

    主要内容是栈和队列. 1.  栈 运算受到限制的线性表.只允许从一端进行插入和删除等操作.这一端便是栈顶,另一端便是栈底. 其实可以把栈想象层任何有底无盖的柱状的容器...毕竟栈满足后进先出的特性.计 ...

随机推荐

  1. 同一台电脑使用 gitlab 和 github 配置

    Git 客户端与服务器端的通信支持多种协议,ssh 最常用.ssh的公钥登录流程,用户将自己的公钥存储在远程主机,登录时,远程主机会向用户发送一条消息,用户用自己的私钥加密后,再发给服务器.远程主机用 ...

  2. 使用nginx处理静态资源请求,其余交给node

    由于项目后台使用的是node,然而node不适合对静态资源的处理,因为他的异步处理(事件轮询)机制,所以更擅长的是密集I/O型的应用,所以我就有了一个想法,使用nginx来做反向代理,当请求的是静态资 ...

  3. TypeScript笔记 5--变量声明(解构和展开)

    解构是什么 解构(destructuring assignment)是一种表达式,将数组或者对象中的数据赋给另一变量. 在开发过程中,我们经常遇到这样问题,需要将对象某个属性的值赋给其它两个变量.代码 ...

  4. 浅析const、let与var

    以前无论声明变量还是常量,总是使用var一勺端,知道接触了es6之后,发现原来变量.常量的声明其实是很讲究的. 这里简单来谈谈var.const与let. 1.var.var声明的变量没有块级作用域, ...

  5. iframe及与页面之间的通信

    获取iframe对象 iframe元素本身是位于父级页面中的,所以你可以像一个普通元素一样的使用和操作它 代表了iframe内容window对象是作为一个页面的属性加入到iframe中的, 为了让父级 ...

  6. Web前端:如何实现选择select下拉框选中跳转其他页面

    <select onchange="window.location=this.value;"><option value="a.html"&g ...

  7. 查看三种MySQL字符集的方法

    查看MySQL字符集的命令是我们经常会使用到的,下文就介绍了其中的三种查看MySQL字符集的命令,供您参考学习. 作者:佚名来源:互联网|2010-10-09 11:36 移动端 收藏 分享 CTO训 ...

  8. UILabel的顶对齐解决方法

    对于有多行文字的UILabel而言,需要设置UILabel的numberoflines属性,此属性默认是1,也就是只显示一行,多余的会以尾部,中间的方式进行截断,具体要看你的初始设置. 在这里可以将其 ...

  9. MySQL浅谈 LEFT JOIN

    On条件(在“A left join b on conditional_expr”)决定如何从table B 中检索数据行(Matching-State); 如果B中没有行匹配On 条件,额外的B的所 ...

  10. 记录linux tty的一次软锁排查2

    在复现tty的死锁问题的时候,文洋兄使用了如下的方式: #include <fcntl.h> #include <unistd.h> #include <stdio.h& ...