1069: [SCOI2007]最大土地面积

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 2978  Solved: 1173
[Submit][Status][Discuss]

Description

  在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成
的多边形面积最大。

Input

  第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。

Output

  最大的多边形面积,答案精确到小数点后3位。

Sample Input

5
0 0
1 0
1 1
0 1
0.5 0.5

Sample Output

1.000

HINT

数据范围 n<=2000, |x|,|y|<=100000


4边形呵呵

枚举对角线,就是两个三角形啊....并且还是两个点确定的...卡就行了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const double eps=1e-; inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
} struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return sgn(x-a.x)<||(sgn(x-a.x)==&&sgn(y-a.y)<);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;}
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;} double Len(Vector a){return sqrt(Dot(a,a));}
double Len2(Vector a){return Dot(a,a);}
double DisTL(Point p,Point a,Point b){
Vector v1=p-a,v2=b-a;
return abs(Cross(v1,v2)/Len(v2));
}
int ConvexHull(Point p[],int n,Point ch[]){
sort(p+,p++n);
int m=;
for(int i=;i<=n;i++){
while(m>&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
int k=m;
for(int i=n-;i>=;i--){
while(m>k&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
if(n>) m--;
return m;
}
double S(Vector a,Vector b){return abs(Cross(a,b));}
double RotatingCalipers(Point p[],int n){
if(n<) return ;
if(n==) return abs(Cross(p[]-p[],p[]-p[]))/+abs(Cross(p[]-p[],p[]-p[]))/;
double ans=;
p[n+]=p[];
for(int i=;i<=n-;i++){
int k=i+,l=(i+)%n+;
for(int j=i+;j<=n;j++){
while(k+<j&&sgn(S(p[k]-p[i],p[j]-p[i])-S(p[k+]-p[i],p[j]-p[i]))<) k=k+;
while(l%n+!=i&&sgn(S(p[l]-p[i],p[j]-p[i])-S(p[l%n+]-p[i],p[j]-p[i]))<) l=l%n+;
ans=max(ans,S(p[k]-p[i],p[j]-p[i])/+S(p[l]-p[i],p[j]-p[i])/);
}
}
return ans;
} int n;
Point p[N],ch[N];
int main(int argc, const char * argv[]) {
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
n=ConvexHull(p,n,ch);
double ans=RotatingCalipers(ch,n);
printf("%.3f",ans);
}

BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]的更多相关文章

  1. BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)

    题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...

  2. bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...

  3. 1069: [SCOI2007]最大土地面积|旋转卡壳

    旋转卡壳就是先求出凸包.然后在凸包上枚举四边形的对角线两側分别找面积最大的三角形 因为在两側找面积最大的三角形的顶点是单调的所以复杂度就是n2 单调的这个性质能够自行绘图感受一下,似乎比較显然 #in ...

  4. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  5. bzoj1069 [SCOI2007]最大土地面积 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3767  Solved: 1501[Submit][Sta ...

  6. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  7. ●BZOJ 1069 [SCOI2007]最大土地面积

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...

  8. [BZOJ]1069: [SCOI2007]最大土地面积

    题目大意:给出二维平面上n个点,求最大的由这些点组成的四边形面积.(n<=2000) 思路:求出凸包后旋转卡壳枚举对踵点对作为四边形的对角线,枚举或二分另外两个点,复杂度O(n^2)或O(nlo ...

  9. BZOJ 1069 [SCOI2007]最大土地面积 ——计算几何

    枚举对角线,然后旋转卡壳即可. #include <map> #include <cmath> #include <queue> #include <cstd ...

随机推荐

  1. YUI3组件框架之plugin

    plugin相关源码分析: plugin功能包括如下几个模块, 简单分析如下: pluginhost-base 维护对象 this._plugins = {}: 并提供方法: plug.unplug. ...

  2. eclipse配置虚拟路径后,每次启动tomcat都会虚拟路径失效的问题解决

    由于,eclipse启动tomcat部署项目并不是直接把项目放到tomcat的webapps目录下的,而是从我们在eclipse配置的外部tomcat中取出二进制文件,在eclipse内部插件中作为t ...

  3. 零基础教你写python爬虫

    大家都知道python经常被用来做爬虫,用来在互联网上抓取我们需要的信息. 使用Python做爬虫,需要用到一些包: requests urllib BeautifulSoup 等等,关于python ...

  4. 如何解决wamp中apache外部IP访问问题

    # # Some examples: #ErrorDocument 500 "The server made a boo boo." #ErrorDocument 404 /mis ...

  5. 微信小程序版2048

    最近流行微信"跳一跳"小游戏,我也心血来潮写了一个微信小程序版2048,本篇文章主要分享实现2048的算法以及注意的点,一起来学习吧!(源码地址见文章末尾)   算法 1.生成4* ...

  6. php错误 分析

    ---------------------------------------------------------------------------------------------------- ...

  7. Android + Eclipse + PhoneGap 环境配置

    用了3天的时间,终于把环境搭建完毕,郁闷了N天,终于完成了.这里我只是讲述我安装的过程,仅供大家参考. 环境搭建首先要去下载一些安装包: (下载前注意一下,电脑是32位还是64位的请注意选择安装包) ...

  8. jquery ui-----弹出窗口 dialog

    jquery ui 提供了强大的dialog功能,基本能满足开发的功能. 先上一个简单的例子: [代码] <script> $(function() {   $( "#dialo ...

  9. echarts使用总结

    项目中需要实现数据可视化,在前辈的推荐之下,最终选取了echarts来实现,在此关于echarts的使用进行总结,最终代码分享至我的github. 关于echarts echarts是百度推出的,使用 ...

  10. Java 获取年 月 日 时 分 秒

    /** * 英文简写(默认)如:2010-12-01 */ public static String FORMAT_SHORT = "yyyy-MM-dd"; /** * 英文全称 ...