http://blog.csdn.net/pipisorry/article/details/49427989

海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis

{博客内容:Clustering.  The problem is to take large numbers of points and group them into a small number of groups so that points are much closer to other points in their group than to points in other groups.  This subject, although it has a long history, is sometimes referred to by the retronym "unsupervised learning," because you "learn" something about the data without needed a training set.}

聚类综述Overview

问题形式化描述

聚类难点

聚类实例

   

距离度量方法的选择

聚类方法

Note: A topic is just a set of words that appear together frequently.

皮皮blog

层次聚类Hierarchical Clustering

这里只讲凝聚即自底向上的层次聚类方法。

主要思想及问题

欧式空间Euclidean的点和距离表示

层次聚类示例1

合并距离最近的两点

合并距离最近的新点

非欧式空间Non-Euclidean的点和距离表示

皮皮blog

from:http://blog.csdn.net/pipisorry/article/details/49427989

ref: [聚类算法]

海量数据挖掘MMDS week5: 聚类clustering的更多相关文章

  1. 海量数据挖掘MMDS week5: 计算广告Computational Advertising

    http://blog.csdn.net/pipisorry/article/details/49428053 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  2. 海量数据挖掘MMDS week3:社交网络之社区检测:高级技巧

    http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  3. 海量数据挖掘MMDS week7: 局部敏感哈希LSH(进阶)

    http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  4. 海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensitive Hashing, LSH

    http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  5. 海量数据挖掘MMDS week3:社交网络之社区检测:基本技巧

    http://blog.csdn.net/pipisorry/article/details/49052057 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  6. 海量数据挖掘MMDS week7: 相似项的发现:面向高相似度的方法

    http://blog.csdn.net/pipisorry/article/details/49742907 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  7. 海量数据挖掘MMDS week6: MapReduce算法(进阶)

    http://blog.csdn.net/pipisorry/article/details/49445519 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  8. 海量数据挖掘MMDS week6: 决策树Decision Trees

    http://blog.csdn.net/pipisorry/article/details/49445465 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  9. 海量数据挖掘MMDS week6: 支持向量机Support-Vector Machines,SVM

    http://blog.csdn.net/pipisorry/article/details/49445387 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

随机推荐

  1. 读书笔记-《Maven实战》-2018/4/16

    第一章:Maven简介 1:Maven:Maven原本的单词意思为"知识的积累",谷歌翻译为"行家",而作为Apache的开源项目,Maven是一个主要服务于基 ...

  2. Linux完全卸载Oracle的操作步骤

    卸载步骤如下:1.运行$ORACLE_HOME/bin/localconfig delete2.rm -rf $ORACLE_BASE/*3.rm -f /etc/oraInst.loc etc/or ...

  3. os和sys模块的区别及其常用方法总结

    官方解释:os: This module provides a portable way of using operating system dependent functionality. 翻译:提 ...

  4. MLDS笔记:浅层结构 vs 深层结构

    深度学习出现之前,机器学习方面的开发者通常需要仔细地设计特征.设计算法,且他们在理论上常能够得知这样设计的实际表现如何: 深度学习出现后,开发者常先尝试实验,有时候实验结果常与直觉相矛盾,实验后再找出 ...

  5. ACM Max Factor

    To improve the organization of his farm, Farmer John labels each of his N (1 <= N <= 5,000) co ...

  6. oo第二阶段总结

    第五次作业--多线程电梯 一.设计策略 本次作业是我们第一次接触多线程,给程序添加多线程功能后最大的挑战是实现共享数据的安全.避免冲突,由于这次作业是第一次尝试多线程方法,因此采用了将所有方法都加上s ...

  7. IDEA中Git的使用

    工作中多人使用版本控制软件协作开发,常见的应用场景归纳如下: 假设小组中有两个人,组长小张,组员小袁 场景一:小张创建项目并提交到远程Git仓库 场景二:小袁从远程Git仓库上获取项目源码 场景三:小 ...

  8. CentOS7: How to resolve curl#56 - "Recv failure: Connection reset by peer"

    Issue: When you execute Yum installation or update, you may encounter following error: Loaded plugin ...

  9. Java程序员的Golang入门指南(上)

    Java程序员的Golang入门指南 1.序言 Golang作为一门出身名门望族的编程语言新星,像豆瓣的Redis平台Codis.类Evernote的云笔记leanote等. 1.1 为什么要学习 如 ...

  10. Android支付——支付宝支付总结

    摘要:分享牛系列.分享牛转载.第三方支付,java第三方支付.android第三方支付. 原文地址:http://blog.csdn.net/zwl5670/article/details/51219 ...