Splay入门解析【保证让你看不懂(滑稽)】
来自两年后的提示
本篇文章只是娱乐向的介绍性文章,可以进行初步理解。
\(\text{Splay}\)如果需要严格的证明均摊复杂度参考势能分析。
另外\(\text{Splay}\)依靠\(rotate\)来维护\(size\)等节点维护的值。
如果代码中没有体现请不要忘记上面这句话。
另外本文中很多内容经不起推敲,然而我懒得改了。。。
QwQ......
BST真是神奇的东西。。。
而且种类好多呀。。。
我这个蒟蒻只学会了splay
orzCJ老爷,各种树都会
好好好,不说了,直接说splay。
不知道splay是啥,,你也要知道平衡树是啥。。。
平衡树是一个神奇的数据结构,
对于任意一个节点,左儿子的值比它小,右儿子的值比它大
并且任意一棵子树单独拎出来也是一棵平衡树
就像这样。。。。
各位大佬请原谅我丑陋无比的图
上面这个丑陋的东西就是一棵平衡树,他现在很平衡,是一棵满二叉树,高度正好是logn。。。
但是。。
如果这个丑陋的东西极端一点,他就会变成这样。。。
这张图依然很丑
现在看起来,这个东西一点都不平衡。。。
二叉树退化成了一条链
如果要查询的话,,,最坏情况下就变成了O(n)
这就很尴尬了。。。
各位大佬们为了解决平衡树这个尴尬的问题,想出了各种方法。。
也就是弄出了各种树。。。。(然而cj大佬都会)
然后有一个注明的大佬叫做Tarjan,弄出了splay这个玩意。。。
这个玩意怎么解决上面的问题呢???
你是一个平衡树是吧。。。
我把你的节点的顺序修改一下,让你还是一棵平衡树,在这个过程中你的结构就变化了,就可能不再是一条链了。
诶,这个看起来很厉害的感觉。。。
但是,,我怎么说也说不清呀。。
弄张丑陋的图过来
这是一个丑陋的平衡树的一部分
其中XYZ三个是节点,ABC三个是三棵子树
现在这个玩意,我如果想把X弄到Y那个地方去要怎么办,这样的话我就经过了旋转,重构了这棵树的结构,就可能让他变得更加平衡
恩,我们来看看怎么办。。。
X是Y的左儿子,所以X < Y
Y是Z的左儿子,所以Y < Z
所以X < Z,所以如果要把X弄到Y的上面去的话,X就应该放到Y的那个位置
继续看,现在Y > X那么Y一定是X的右儿子
但是X已经有了右儿子B,
根据平衡树我们可以知道X < B < Y
所以我们可以把X的右儿子B丢给Y当做左儿子
而X的左儿子A有A < X < Y < Z显然还是X的左儿子
综上,我们一顿乱搞,原来的平衡树被我们搞成了这个样子
在检查一下
原来的大小关系是
A < X < B < Y < C < Z
把X旋转一下之后大小关系
A < X < B < Y < C < Z
诶,大小关系也没有变
所以之前那棵平衡树就可以通过旋转变成这个样子
并且这个时候还是一棵平衡树
好神奇诶。。。
但是,XYZ的关系显然不仅仅只有这一种
有Y是Z的左儿子 X是Y的左儿子
有Y是Z的左儿子 X是Y的右儿子
有Y是Z的右儿子 X是Y的左儿子
有Y是Z的右儿子 X是Y的右儿子
一共4种情况,大家可以自己画画图,转一转。
如果把上面的图画完了,我们就可以正式的来玩一玩splay了
转完了上面四种情况,我们来找找规律
最明显的一点,我们把X转到了原来Y的位置
也就是说,原来Y是Z的哪个儿子,旋转之后X就是Z的哪个儿子
继续看一看
我们发现,X是Y的哪个儿子,那么旋转完之后,X的那个儿子就不会变
什么意思?
看一看我上面画的图
X是Y的左儿子,A是X的左儿子,旋转完之后,A还是X的左儿子
这个应该不难证明
如果X是Y的左儿子,A是X的左儿子
那么A < X < Y旋转完之后A还是X的左儿子
如果X是Y的右儿子,A是X的右儿子
那么A > X > Y 只是把不等式反过来了而已
再看一下,找找规律
如果原来X是Y的哪一个儿子,那么旋转完之后Y就是X的另外一个儿子
再看看图
如果原来X是Y的左儿子,旋转之后Y是X的右儿子
如果原来X是Y的右儿子,旋转之后Y是X的左儿子
这个应该也很好证明吧。。。
如果X是右儿子 X > Y,所以旋转后Y是X的左儿子
如果X是左儿子 Y > X,所以旋转后Y是X的右儿子
所以总结一下:
1.X变到原来Y的位置
2.Y变成了 X原来在Y的 相对的那个儿子
3.Y的非X的儿子不变 X的 X原来在Y的 那个儿子不变
4.X的 X原来在Y的 相对的 那个儿子 变成了 Y原来是X的那个儿子
啊,,,写出来真麻烦,用语言来写一下
其中t是树上节点的结构体,ch数组表示左右儿子,ch[0]是左儿子,ch[1]是右儿子,ff是父节点
void rotate(int x)//X是要旋转的节点
{
int y=t[x].ff;//X的父亲
int z=t[y].ff;//X的祖父
int k=t[y].ch[1]==x;//X是Y的哪一个儿子 0是左儿子 1是右儿子
t[z].ch[t[z].ch[1]==y]=x;//Z的原来的Y的位置变为X
t[x].ff=z;//X的父亲变成Z
t[y].ch[k]=t[x].ch[k^1];//X的与X原来在Y的相对的那个儿子变成Y的儿子
t[t[x].ch[k^1]].ff=y;//更新父节点
t[x].ch[k^1]=y;//X的 与X原来相对位置的儿子变成 Y
t[y].ff=x;//更新父节点
}
上面的代码用了很多小小小技巧
比如t[y].ch[1]==x
t[y].ch[1]是y的右儿子,如果x是右儿子,那么这个式子是1,否则是0,也正好对应着左右儿子
同样的k1,表示相对的儿子,左儿子01=1 右儿子1^1=0
好了,这就是一个基本的旋转操作(别人讲的
继续看接下来的东西
现在考虑一个问题
如果要把一个节点旋转到根节点(比如上面的Z节点呢)
我们是不是可以做两步,先把X转到Y再把X转到Z呢?
我们来看一看
一个这样的Splay
把X旋转到Y之后
再接着把X旋转到Z之后
好了,这就是对X连着旋转两次之后的Splay,看起来似乎没有什么问题。
但是,我们现在再来看一看
原图中的Splay有一条神奇链: Z->Y->X->B
然后再来看一看旋转完之后的Splay
也有一条链X->Z->Y->B
也就是说
如果你只对X进行旋转的话,
有一条链依旧存在,
如果是这样的话,splay很可能会被卡。
好了,
显然对于XYZ的不同情况,可以自己画图考虑一下,
如果要把X旋转到Z的位置应该如何旋转
归类一下,其实还是只有两种:
第一种,X和Y分别是Y和Z的同一个儿子
第二种,X和Y分别是Y和Z不同的儿子
对于情况一,也就是类似上面给出的图的情况,就要考虑先旋转Y再旋转X
对于情况二,自己画一下图,发现就是对X旋转两次,先旋转到Y再旋转到X
这样一想,对于splay旋转6种情况中的四种就很简单的分了类
其实另外两种情况很容易考虑,就是不存在Z节点,也就是Y节点就是Splay的根了
此时无论怎么样都是对于X向上进行一次旋转
那么splay的旋转也可以很容易的简化的写出来
void splay(int x,int goal)//将x旋转为goal的儿子,如果goal是0则旋转到根
{
while(t[x].ff!=goal)//一直旋转到x成为goal的儿子
{
int y=t[x].ff,z=t[y].ff;//父节点祖父节点
if(z!=goal)//如果Y不是根节点,则分为上面两类来旋转
(t[z].ch[0]==y)^(t[y].ch[0]==x)?rotate(x):rotate(y);
//这就是之前对于x和y是哪个儿子的讨论
rotate(x);//无论怎么样最后的一个操作都是旋转x
}
if(goal==0)root=x;//如果goal是0,则将根节点更新为x
}
这样写多简单,比另外一些人写得分6种情况讨论要简单很多。
应SYC大佬要求,继续补充内容。
先是查找find操作
从根节点开始,左侧都比他小,右侧都比他大,
所以只需要相应的往左/右递归
如果当前位置的val已经是要查找的数
那么直接把他Splay到根节点,方便接下来的操作
类似于二分查找,
所以时间复杂度O(logn)
inline void find(int x)//查找x的位置,并将其旋转到根节点
{
int u=root;
if(!u)return;//树空
while(t[u].ch[x>t[u].val]&&x!=t[u].val)//当存在儿子并且当前位置的值不等于x
u=t[u].ch[x>t[u].val];//跳转到儿子,查找x的父节点
splay(u,0);//把当前位置旋转到根节点
}
下一个Insert操作
往Splay中插入一个数
类似于Find操作,只是如果是已经存在的数,就可以直接在查找到的节点的进行计数
如果不存在,在递归的查找过程中,会找到他的父节点的位置,
然后就会发现底下没有啦。。。
所以这个时候新建一个节点就可以了
inline void insert(int x)//插入x
{
int u=root,ff=0;//当前位置u,u的父节点ff
while(u&&t[u].val!=x)//当u存在并且没有移动到当前的值
{
ff=u;//向下u的儿子,父节点变为u
u=t[u].ch[x>t[u].val];//大于当前位置则向右找,否则向左找
}
if(u)//存在这个值的位置
t[u].cnt++;//增加一个数
else//不存在这个数字,要新建一个节点来存放
{
u=++tot;//新节点的位置
if(ff)//如果父节点非根
t[ff].ch[x>t[ff].val]=u;
t[u].ch[0]=t[u].ch[1]=0;//不存在儿子
t[tot].ff=ff;//父节点
t[tot].val=x;//值
t[tot].cnt=1;//数量
t[tot].size=1;//大小
}
splay(u,0);//把当前位置移到根,保证结构的平衡。注意前面因为更改了子树大小,所以这里必须Splay上去进行pushup保证size的正确。
}
继续,,,
前驱/后继操作Next
首先就要执行Find操作
把要查找的数弄到根节点
然后,以前驱为例
先确定前驱比他小,所以在左子树上
然后他的前驱是左子树中最大的值
所以一直跳右结点,直到没有为止
找后继反过来就行了
inline int Next(int x,int f)//查找x的前驱(0)或者后继(1)
{
find(x);
int u=root;//根节点,此时x的父节点(存在的话)就是根节点
if(t[u].val>x&&f)return u;//如果当前节点的值大于x并且要查找的是后继
if(t[u].val<x&&!f)return u;//如果当前节点的值小于x并且要查找的是前驱
u=t[u].ch[f];//查找后继的话在右儿子上找,前驱在左儿子上找
while(t[u].ch[f^1])u=t[u].ch[f^1];//要反着跳转,否则会越来越大(越来越小)
return u;//返回位置
}
还有操作呀/。。。
删除操作
现在就很简单啦
首先找到这个数的前驱,把他Splay到根节点
然后找到这个数后继,把他旋转到前驱的底下
比前驱大的数是后继,在右子树
比后继小的且比前驱大的有且仅有当前数
在后继的左子树上面,
因此直接把当前根节点的右儿子的左儿子删掉就可以啦
inline void Delete(int x)//删除x
{
int last=Next(x,0);//查找x的前驱
int next=Next(x,1);//查找x的后继
splay(last,0);splay(next,last);
//将前驱旋转到根节点,后继旋转到根节点下面
//很明显,此时后继是前驱的右儿子,x是后继的左儿子,并且x是叶子节点
int del=t[next].ch[0];//后继的左儿子
if(t[del].cnt>1)//如果超过一个
{
t[del].cnt--;//直接减少一个
splay(del,0);//旋转
}
else
t[next].ch[0]=0;//这个节点直接丢掉(不存在了)
}
忽然发现我连第K大都没有写,随口口胡一下
从当前根节点开始,检查左子树大小
因为所有比当前位置小的数都在左侧
如果左侧的数的个数多余K,则证明第K大在左子树中
否则,向右子树找,找K-左子树大小-当前位置的数的个数
记住特判K恰好在当前位置
inline int kth(int x)//查找排名为x的数
{
int u=root;//当前根节点
if(t[u].size<x)//如果当前树上没有这么多数
return 0;//不存在
while(1)
{
int y=t[u].ch[0];//左儿子
if(x>t[y].size+t[u].cnt)
//如果排名比左儿子的大小和当前节点的数量要大
{
x-=t[y].size+t[u].cnt;//数量减少
u=t[u].ch[1];//那么当前排名的数一定在右儿子上找
}
else//否则的话在当前节点或者左儿子上查找
if(t[y].size>=x)//左儿子的节点数足够
u=y;//在左儿子上继续找
else//否则就是在当前根节点上
return t[u].val;
}
}
还剩下一些splay的基本操作
先留个坑,以后再慢慢补。。。
Splay入门解析【保证让你看不懂(滑稽)】的更多相关文章
- 小师妹学JVM之:深入理解JIT和编译优化-你看不懂系列
目录 简介 JIT编译器 Tiered Compilation分层编译 OSR(On-Stack Replacement) Deoptimization 常见的编译优化举例 Inlining内联 Br ...
- 如何写出同事看不懂的Java代码?
原创:微信公众号 码农参上,欢迎分享,转载请保留出处. 哈喽大家好啊,我是没更新就是在家忙着带娃的Hydra. 前几天,正巧赶上组里代码review,一下午下来,感觉整个人都血压拉满了.五花八门的代码 ...
- 学java入门到精通,不得不看的15本书
学java入门到精通,不得不看的15本书 一.Java编程入门类1.<Java编程思想>2.<Agile Java>中文版 二.Java编程进阶类1.<重构 改善既有代码 ...
- 还看不懂同事的代码?超强的 Stream 流操作姿势还不学习一下
Java 8 新特性系列文章索引. Jdk14都要出了,还不能使用 Optional优雅的处理空指针? Jdk14 都要出了,Jdk8 的时间处理姿势还不了解一下? 还看不懂同事的代码?Lambda ...
- 小白学习React官方文档看不懂怎么办?
最近在上React课程的时候,发现好多同学不会看文档,所以在这里写一篇文章,希望能给同学们一点点启发. 我们首先打开React官方网站——https://react.docschina.org/doc ...
- 不要写很酷但同事看不懂的Java代码
你好呀,我是沉默王二,一个和黄家驹一样身高,和刘德华一样颜值的程序员.为了提高 Java 编程的技艺,我最近在 GitHub 上学习一些高手编写的代码.下面这一行代码(出自大牛之手)据说可以征服你的朋 ...
- 对于挑战书上的很久之前都看不懂的DP看懂的突破
突破一..牢记问题概念 并且牢记dp状态方程 突破二..一直有一个求和dp转化成O1dp递推的式子看不懂.. 看不懂的原因是..没有分清求和符号作用的范围 提醒:以后遇到求和符号一定明确其求和的式子的 ...
- QQ地图api里的 地址解析函数 看不懂 javascript_百度知道
QQ地图api里的 地址解析函数 看不懂 javascript_百度知道 QQ地图api里的 地址解析函数 看不懂 javascript 2011-09-18 12:18 匿名 ...
- thinkphp学习笔记10—看不懂的路由规则
原文:thinkphp学习笔记10-看不懂的路由规则 路由这部分貌似在实际工作中没有怎么设计过,只是在用默认的设置,在手册里面看到部分,艰涩难懂. 1.路由定义 要使用路由功能需要支持PATH_INF ...
随机推荐
- Python高级用法总结
Python很棒,它有很多高级用法值得细细思索,学习使用.本文将根据日常使用,总结介绍Python的一组高级特性,包括:列表推导式.迭代器和生成器.装饰器. 列表推导(list comprehensi ...
- CSS3动画中的animation-timing-function效果演示
CSS3动画(animation)属性有如下几个: 属性 值 说明 animation-name name 指定元素要使用的keyframes名称 animation-duration time(ms ...
- nginx上支持.htaccess伪静态的配置实例
本文介绍下,在nginx上配置.htaccess伪静态的方法,有需要的朋友参考下吧. 在apache上.htaccess转向,只要apache编译的时候指明支持rewrite模块即可. 但是换到ngi ...
- MySQL统计函数记录——按月、按季度、按日、时间段统计
按年汇总,统计:select sum(mymoney) as totalmoney, count(*) as sheets from mytable group by date_format(col, ...
- CUP、内存、磁盘是如何在一起工作的
IT技术发展到今天,计算机能做的事情可谓复杂的多.那么计算机是如何做出如此复杂的运算的呢? 不准确的说,计算机主要做两件事,数据计算和数据存储. 第一先说说计算机是如何计算的吧. 我们平时见到的所有计 ...
- Java GC分析记录
Java GC记录 近来.项目没有特别忙碌的时候,抽空看了下生产环境的项目运行状况,我们的项目一直运行速度不是很快,偶尔会出现卡顿的现象,这点给人的体验感觉也就不那么好了.先抛个测试环境截图(生产环境 ...
- linux中权限对文件和目录的作用
chmod 755 a.txt 文件: r:读取文件内容(cat more head tail) w:编辑,新增,修改文件的内容(vi,echo) 不包括删除文件:原因是只能对文件内容进行修改,而在l ...
- web2 - JavaScript
JavaScript 知识要点 参考教材一 参考教材二 参考教材三 1.JavaScript 和 Java 的关系? 2.JavaScript 在编程中可以做什么? 3.如何在 html 中使用 Ja ...
- 【推荐】开源项目minapp-重新定义微信小程序的开发
minapp 重新定义微信小程序的开发 官网:https://qiu8310.github.io/minapp/ 作者:Mora minapp 重新定义微信小程序的开发 使用 用 npm 安装命令行工 ...
- java的mac自动化-自动运行java程序
本文旨在帮助读者介绍,如果一个测试工程师拿到了mac本,该如何在本地自动运行java代码 首先如图所示写下如下一段代码 package zlr;import org.junit.Test;public ...