[LeetCode] Product of Array Except Self 除本身之外的数组之积
Given an array nums
of n integers where n > 1, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Example:
Input:[1,2,3,4]
Output:[24,12,8,6]
Note: Please solve it without division and in O(n).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
这道题给定我们一个数组,让我们返回一个新数组,对于每一个位置上的数是其他位置上数的乘积,并且限定了时间复杂度 O(n),并且不让我们用除法。如果让用除法的话,那这道题就应该属于 Easy,因为可以先遍历一遍数组求出所有数字之积,然后除以对应位置的上的数字。但是这道题禁止我们使用除法,那么我们只能另辟蹊径。我们想,对于某一个数字,如果我们知道其前面所有数字的乘积,同时也知道后面所有的数乘积,那么二者相乘就是我们要的结果,所以我们只要分别创建出这两个数组即可,分别从数组的两个方向遍历就可以分别创建出乘积累积数组。参见代码如下:
C++ 解法一:
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int n = nums.size();
vector<int> fwd(n, ), bwd(n, ), res(n);
for (int i = ; i < n - ; ++i) {
fwd[i + ] = fwd[i] * nums[i];
}
for (int i = n - ; i > ; --i) {
bwd[i - ] = bwd[i] * nums[i];
}
for (int i = ; i < n; ++i) {
res[i] = fwd[i] * bwd[i];
}
return res;
}
};
Java 解法一:
public class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] res = new int[n];
int[] fwd = new int[n], bwd = new int[n];
fwd[0] = 1; bwd[n - 1] = 1;
for (int i = 1; i < n; ++i) {
fwd[i] = fwd[i - 1] * nums[i - 1];
}
for (int i = n - 2; i >= 0; --i) {
bwd[i] = bwd[i + 1] * nums[i + 1];
}
for (int i = 0; i < n; ++i) {
res[i] = fwd[i] * bwd[i];
}
return res;
}
}
我们可以对上面的方法进行空间上的优化,由于最终的结果都是要乘到结果 res 中,所以可以不用单独的数组来保存乘积,而是直接累积到结果 res 中,我们先从前面遍历一遍,将乘积的累积存入结果 res 中,然后从后面开始遍历,用到一个临时变量 right,初始化为1,然后每次不断累积,最终得到正确结果,参见代码如下:
C++ 解法二:
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
vector<int> res(nums.size(), );
for (int i = ; i < nums.size(); ++i) {
res[i] = res[i - ] * nums[i - ];
}
int right = ;
for (int i = nums.size() - ; i >= ; --i) {
res[i] *= right;
right *= nums[i];
}
return res;
}
};
Java 解法二:
public class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length, right = 1;
int[] res = new int[n];
res[0] = 1;
for (int i = 1; i < n; ++i) {
res[i] = res[i - 1] * nums[i - 1];
}
for (int i = n - 1; i >= 0; --i) {
res[i] *= right;
right *= nums[i];
}
return res;
}
}
Github 同步地址:
https://github.com/grandyang/leetcode/issues/238
类似题目:
参考资料:
https://leetcode.com/problems/product-of-array-except-self/
https://leetcode.com/problems/product-of-array-except-self/discuss/65638/My-simple-Java-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Product of Array Except Self 除本身之外的数组之积的更多相关文章
- [LintCode] Product of Array Except Self 除本身之外的数组之积
Given an integers array A. Define B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], calculate B WI ...
- [LeetCode] 238. Product of Array Except Self 除本身之外的数组之积
Given an array nums of n integers where n > 1, return an array output such that output[i] is equ ...
- LeetCode 238. Product of Array Except Self (去除自己的数组之积)
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...
- LeetCode Product of Array Except Self (除自身外序列之积)
题意:给一个序列nums,要求返回一个序列ans,两序列元素个数相同,ans第i个元素就是除了nums[i]之外所有的数相乘之积. 思路:时间O(n),额外空间O(0). 第一次扫一遍,处理nums[ ...
- [leetcode]238. Product of Array Except Self除了自身以外的数组元素乘积
Given an array nums of n integers where n > 1, return an array output such that output[i] is equ ...
- LeetCode——Product of Array Except Self
Description: Given an array of n integers where n > 1, nums, return an array output such that out ...
- 238. [LeetCode] Product of Array Except Self
Given an array nums of n integers where n > 1, return an array output such that output[i] is equ ...
- LeetCode -- Product of Array Except Self My Submissions Question
Question: Given an array of n integers where n > 1, nums, return an array output such that output ...
- LeetCode: Product of Array Except Self
Dynamic Programming public class Solution { public int[] productExceptSelf(int[] nums) { int[] ans = ...
随机推荐
- 全自动迁移数据库的实现 (Fluent NHibernate, Entity Framework Core)
在开发涉及到数据库的程序时,常会遇到一开始设计的结构不能满足需求需要再添加新字段或新表的情况,这时就需要进行数据库迁移. 实现数据库迁移有很多种办法,从手动管理各个版本的ddl脚本,到实现自己的mig ...
- Federated Identity Pattern 联合身份模式
Delegate authentication to an external identity provider. This pattern can simplify development, min ...
- C#开发微信门户及应用(4)--关注用户列表及详细信息管理
在上个月的对C#开发微信门户及应用做了介绍,写过了几篇的随笔进行分享,由于时间关系,间隔了一段时间没有继续写这个系列的博客了,并不是对这个方面停止了研究,而是继续深入探索这方面的技术,为了更好的应用起 ...
- 消耗战 bzoj 2286
消耗战(2s 512MB)repair [问题描述] 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经 ...
- servlet开发中遇到的问题集合
问题1: servlet插入数据库时中文会乱码. 解决方法:在数据库连接地址最后增加两个转码参数(?useUnicode=true&characterEncoding=utf8) url=jd ...
- Servlet的生命周期及工作原理
Servlet生命周期分为三个阶段: 1,初始化阶段 调用init()方法 2,响应客户请求阶段 调用service()方法 3,终止阶段 调用destroy()方法 Servlet初始化阶段: 在 ...
- 如何:加载分页结果(WCF 数据服务)
WCF 数据服务 允许数据服务限制单个响应源中返回的实体数.在此情况下,源中的最后一项包含指向下一页数据的链接.通过调用执行 DataServiceQuery 时返回的 QueryOperationR ...
- html标签学习
1. 标题 : <h1> - <h6> 2. 分割线 : <hr> 3. 加粗: <strong> 4. 斜体: <em> <i> ...
- [备查]使用 SPQuery 查询 "Person or Group" 字段
原文地址:http://www.stum.de/2008/02/06/querying-the-person-or-group-field-using-spquery/ Querying the “P ...
- Android 7.0 Nougat牛轧糖 发布啦
Android 7.0 Nougat牛轧糖 发布啦 Android 7.0 Nougat 牛轧糖于本月发布了. 从官方blog里可以了解到这个版本的新特性. Android 7.0 从2016年8月正 ...