Description

题库链接

给出集合 \(S\) ,元素都是小于 \(M\) 的非负整数。问能够生成出多少个长度为 \(N\) 的数列 \(A\) ,数列中的每个数都属于集合 \(S\) ,并且

\[\prod_{i=1}^N A_i\equiv x \pmod{M}\]

答案对 \(1004535809\) 取模。

\(1\leq N\leq 10^9,3\leq M\leq 8000, M 为质数,0\leq x\leq M-1\)

Solution

显然能够得到 \(DP\) 的解法:令 \(f_{i,j}\) 为生成序列长度为 \(i\) 时,乘积在模 \(M\) 意义下为 \(j\) 的方案数。

显然 \(f_{i,j}\rightarrow f_{i+1,(j\times w)\mod M},w\in S\) 。

但 \(n\leq 10^9\) 显然不能递推。考虑优化。

由于乘法不太好搞,我们试着换种思路,我们不妨将集合内数取 \(\log\) 。那么 \(f_{i,\log j}\rightarrow f_{i+1,\log j+\log w},w\in S\) 。

但实数域上确实不好做,考虑取离散对数。由费马小定理,它是以 \(M-1\) 为周期的,那么只要 \(\text{NTT}\) 优化,加上快速幂。对模意义外的数讨论即可。

Code

#include <bits/stdc++.h>
using namespace std;
const int yzh = 1004535809;
const int N = 8000*4; int n, m, x, s, G, lg[N+5], a, len, L, R[N+5];
int A[N+5]; int quick_pow(int a, int b, int yzh) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*a*ans%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
void get_G() {
int prime[N+5], tot = 0, x = m-1;
for (int i = 2, lim = sqrt(x)+1; i <= lim; i++)
if (x%i == 0) {
prime[++tot] = i;
while (x%i == 0) x /= i;
}
if (x != 1) prime[++tot] = x;
for (int i = 2; true; i++) {
int flag = 1;
for (int j = 1; j <= tot; j++)
if (quick_pow(i, (m-1)/prime[j], m) == 1) {
flag = 0; break;
}
if (flag == 1) {G = i; break; }
}
for (int i = 1, g = G; i < m; i++, g = 1ll*g*G%m) lg[g] = i;
}
void NTT(int *A, int o) {
for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
for (int i = 1; i < len; i <<= 1) {
int gn = quick_pow(3, (yzh-1)/(i<<1), yzh), x, y;
if (o == -1) gn = quick_pow(gn, yzh-2, yzh);
for (int j = 0; j < len; j += (i<<1)) {
int g = 1;
for (int k = 0; k < i; k++, g = 1ll*g*gn%yzh) {
x = A[j+k], y = 1ll*g*A[j+k+i]%yzh;
A[j+k] = (x+y)%yzh, A[j+k+i] = (x-y+yzh)%yzh;
}
}
}
if (o == 1) return;
for (int i = 0, inv = quick_pow(len, yzh-2, yzh); i < len; i++)
A[i] = 1ll*A[i]*inv%yzh;
for (int i = m; i < len; i++) (A[i%(m-1) ? i%(m-1) : m-1] += A[i]) %= yzh, A[i] = 0;
}
void NTTpow(int *A, int b) {
int ans[N+5] = {0}; ans[0] = 1;
while (b) {
NTT(A, 1);
if (b&1) {
NTT(ans, 1);
for (int i = 0; i < len; i++) ans[i] = 1ll*ans[i]*A[i]%yzh;
NTT(ans, -1);
}
for (int i = 0; i < len; i++) A[i] = 1ll*A[i]*A[i]%yzh;
NTT(A, -1); b >>= 1;
}
for (int i = 0; i < len; i++) A[i] = ans[i];
}
void work() {
scanf("%d%d%d%d", &n, &m, &x, &s); get_G();
for (int i = 1; i <= s; i++) {scanf("%d", &a); ++A[lg[a]]; }
A[0] = 0;
for (len = 1; len <= (m<<1); len <<= 1) ++L;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
NTTpow(A, n); printf("%d\n", A[lg[x]]);
}
int main() {work(); return 0; }

[SDOI 2015]序列统计的更多相关文章

  1. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

  2. BZOJ 3992 [SDOI 2015] 序列统计 解题报告

    这个题最暴力的搞法就是这样的: 设 $Dp[i][j]$ 为前 $i$ 个数乘积为 $j$ 的方案数. 转移的话就不多说了哈... 当前复杂度 $O(nm^2)$ 注意到,$M$ 是个质数,就说明 $ ...

  3. [BZOJ 3992] [SDOI 2015] 序列统计

    Description 传送门 Solution [一] 设 \(f[i][j]\) 表示前 \(i\) 个数的乘积在模 \(p\) 意义下等于 \(j\) 的方案数,有 \[ f[i][j]=\su ...

  4. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  5. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  6. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  7. BZOJ4403 序列统计—Lucas你好

    绝对是全网写的最详细的一篇题解  题目:序列统计 代码难度:简单 思维难度:提高+-省选 讲下题面:给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案 ...

  8. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  9. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

随机推荐

  1. java多线程的(一)-之java线程的使用

    一.摘要 每天都和电脑打交道,也相信大家使用过资源管理器杀掉过进程.而windows本身就是多进程的操作系统 在这里我们理解两组基本概念: 1.进程和线程的区别???? 2.并行与并发的区别???? ...

  2. String [] 转 List<String>

    整理笔记:String [] 转 List<String> String [] al = new String[]{"1","q","a& ...

  3. 第一周C语言作业

    一.PTA实验作业 题目1.温度转换 1.实验代码 int main() { int fahr = 150,celsius; celsius = 5 * (fahr - 32) / 9; printf ...

  4. 掌握SQLServer锁的相关概念

    一.为什么要引入锁 当多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: ◆丢失更新 A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 ◆脏读 ...

  5. MyGod_alpha版本测试报告

    买尬-Alpha版本测试报告 @(二手市场APP)[MyGod团队|团队项目|版本测试] 项目名称:武汉大学校园二手市场APP--买尬 软件版本:1.0.0 开发团队:MyGod 开发代表:程环宇 张 ...

  6. HTTP协议形象展现

    关于http协议:我们分成几个模块说: http协议: HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统. HTTP协议的主要特点可概括如下: 1.支持客户 ...

  7. XML使用练习

    #!/usr/bin/env python # -*- coding:utf-8 -*- import requests from xml.etree import ElementTree as ET ...

  8. 2017北京国庆刷题Day1 afternoon

    期望得分:100+100+100=300 实际得分:100+100+100=300 T1 一道图论好题(graph) Time Limit:1000ms   Memory Limit:128MB 题目 ...

  9. EVA 4400存储硬盘故障数据恢复方案和数据恢复过程

    EVA系列存储是一款以虚拟化存储为实现目的的HP中高端存储设备,平时数据会不断的迁移,加上任务通常较为繁重,所以磁盘的负载相对是较重的,也是很容易出现故障的.EVA是依靠大量磁盘的冗余空间,以及故障后 ...

  10. 基本数据类型 Symbol

    ES6 规范之前, JavaScript 一共有六种数据类型,分别是五种基本数据类型: string . number , boolean , null , undefined ,和一种引用数据类型: ...