Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤10^9,1≤L≤H≤10^9,H-L≤10^5

题解

设 $F(x)$ 为 $x\mid gcd$ 的个数, $f(x)$ 为 $gcd=x$ 的个数。

\begin{aligned}F(x)&=\sum_{x\mid d}f(d)\\\Rightarrow f(x)&=\sum_{x\mid d}\mu\left(\frac{d}{x}\right)F(d)\end{aligned}

对于输入 $(N,K,L,H)$ 我们记 $\left\lceil\frac{L}{K}\right\rceil$ 为 $l$ ,记 $\left\lfloor\frac{H}{K}\right\rfloor$ 为 $h$ 。

提出 $K$ ,答案就是 $$f(1)=\sum_{i=1}^{h}\mu(i)F(i)$$

显然 $F(i)=\left(\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor\right)^N$

由于 $h$ 很大,我们还是不能枚举这个 $i$ 。考虑到这样一个问题:当 $i$ 很大时 $\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor$ 会变成 $0$ 或 $1$ 。实际上只要 $i>h-l$ 数值就为 $0$ 或 $1$ 了。

那么现在答案就变成了 \begin{aligned}&\sum_{i=1}^{h-l}\mu(i)\left(\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor\right)^N+\sum_{i=h-l+1}^h\mu(i)\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor\\=&\sum_{i=1}^{h-l}\mu(i)\left(\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor\right)^N+\sum_{i=1}^h\mu(i)\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor-\sum_{i=1}^{h-l}\mu(i)\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor\end{aligned}

我们观察到式子 $\sum\limits_{i=1}^h\mu(i)\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor$ 的含义就是 $l\sim r$ 区间内有是否有值为 $1$ ,所以等价于 $[L\leq K\wedge K\leq H]$ 。

所以 $$ans=\sum_{i=1}^{h-l}\mu(i)\left(\left(\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor\right)^N-\left(\left\lfloor\frac{h}{i}\right\rfloor-\left\lfloor\frac{l-1}{i}\right\rfloor\right)\right)+[L\leq K\wedge K\leq H]$$

 //It is made by Awson on 2018.1.24
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1e5;
const int MOD = ;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} int n, k, l, h, mu[N+];
int isprime[N+], prime[N+], tot; void get_mu() {
memset(isprime, , sizeof(isprime)); isprime[] = , mu[] = ;
for (int i = ; i <= N; i++) {
if (isprime[i]) prime[++tot] = i, mu[i] = -;
for (int j = ; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = ;
if (i%prime[j]) mu[i*prime[j]] = -mu[i];
else {mu[i*prime[j]] = ; break; }
}
}
}
int quick_pow(int a, int b) {
int ans = ;
while (b) {
if (b&) ans = (LL)ans*a%MOD;
a = (LL)a*a%MOD, b >>= ;
}
return ans;
}
void work() {
get_mu(); read(n), read(k), read(l), read(h);
int flag = (l <= k && k <= h), ans = ;
l = ceil(.*l/k), h = (h/k);
for (int i = ; i <= h-l; i++) ans = (ans+(LL)mu[i]*quick_pow(h/i-(l-)/i, n)%MOD)%MOD;
for (int i = ; i <= h-l; i++) ans = (ans-(LL)mu[i]*(h/i-(l-)/i)%MOD)%MOD;
writeln((ans+flag+MOD)%MOD);
}
int main() {
work();
return ;
}

[CQOI 2015]选数的更多相关文章

  1. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  2. 解题:CQOI 2015 选数

    题面 神仙题,不需要反演 首先上下界同时除以$k$,转换成取$n$个$gcd$为$1$的数的方案数,其中上界向下取整,下界向上取整 然后设$f[i]$表示选$n$个互不相同的数$gcd$为$i$的方案 ...

  3. Bzoj3930: [CQOI 2015] 选数 & COGS2699: [CQOI 2015] 选数加强版

    题面 Bzoj COGS加强版 Sol 非加强版可以枚举AC这里不再讲述 设\(f(i)\)表示在\([L, H]\)取\(N\)个,\(gcd为i\)的方案数 \(F(i)=\sum_{i|d}f( ...

  4. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  5. CODE VS1008选数

    #include<cstdlib> #include<cstdio> #include<iostream> #include<cmath> #inclu ...

  6. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  7. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  8. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  9. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

随机推荐

  1. JavaWeb学习笔记六 JSP

    JSP技术 JSP全称Java Server Pages,是一种动态网页开发技术.它使用JSP标签在HTML网页中插入Java代码.标签通常以<%开头以%>结束. JSP是一种Java s ...

  2. VS2017调试器无法附加到IIS进程(w3wp.exe)

    问题描述: 当使用VS2017-> 调试->附加到进程来调试IIS进程(w3wp.exe)时,报错"无法附加到进程,已附加了一个调试器" 为了解决这个问题花了不少时间, ...

  3. 2018上C语言程序设计(高级)博客作业样例

    要求一(20分) 完成PTA中题目集名为<usth-C语言高级-第1次作业>中的所有题目. 要求二 PTA作业的总结(20分+30分) 将PTA第1次作业作业中以下2道题的解题思路按照规定 ...

  4. 第二次作业-关于Steam游戏平台的简单分析

    1.1 Steam平台的简单介绍 你选择的产品是? 如题,这次的作业我选择了Steam作为分析的对象. 为什么选择该产品作为分析? 我选择数字游戏贩售平台STEAM作为分析对象的原因有以下几点: 1. ...

  5. Beta No.1

    一.今日任务 重新熟悉整体项目 对整个项目在未来的beta冲刺中进程有一个合理的规划 由于我们送出的是一个负责前端的成员,引入的也是一个负责前端工作的女生,(女生做起美工比起男生更加得心应手吧)所以我 ...

  6. bug终结者 团队作业第三周

    bug终结者 团队作业第三周 团队展示 队名 bug终结者 队员风采: 杨京典 20162302 风格:先构建框架,在一 一实现,在实现的过程中不断测试和修改. 擅长的技术:拆分问题,使用相对简单的思 ...

  7. 如何用tomcat实现类似weblogic那样的热部署方式

    平时weblogic部署程序包时一般是到控制台去部署,不需要重启. 相反之前用tomcat部署应用时,我一般都是把tomcat重启来完成程序包的更新或新包部署.但是这次要部署的应用有点多,大概10几个 ...

  8. Linux知识积累(5) 关机shutdown和重启reboot

    Linux centos关机与重启命令详解与实战 Linux centos重启命令: 1.reboot 2.shutdown -r now 立刻重启(root用户使用) 3.shutdown -r 1 ...

  9. io使用的设计模式

    File f = new File("c:/a.txt"); 1. FileInputStream fis = new FileInputStream(f); 2. Reader ...

  10. python flask框架 蓝图的使用

    蓝图的目的是实现 各个模块的视图函数写在不同的py文件当中. 主视图 中 导入 分路由视图的模块,并且注册蓝图对象 分路由视图中 利用 蓝图对象 的route 进行装饰视图函数 主路由视图函数: #c ...