BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈
BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈
Description
Input
一行,一个字符串S
Output
一行,一个整数,表示所求值
Sample Input
Sample Output
54
前面那个len的和=(n-1)*n*(n+1)/2。只需要考虑后面的贡献。
求出height数组,然后问题转化为求所有区间的最小值之和。
设f[i]为所有右端点为i的区间的最小值之和。
每次找到i左边第一个height小于等于i的位置j,显然左端点在j之前那部分的答案之和为f[j],左端点在j之后的那部分的最小值为height[i]。
有f[i]=f[j]+(i-j)*height[i]。
维护一个单调栈(单调递增),每次找j就很方便。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define N 500050
typedef long long ll;
int wa[N],wb[N],wv[N],ws[N],r[N],sa[N],height[N],rank[N],n,m,S[N],top;
ll f[N];
char s[N];
void build_suffix_array() {
m=129;
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[x[i]=r[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
for(j=p=1;p<n;j<<=1,m=p) {
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]-j>=0) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[wv[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,x[sa[0]]=0,i=p=1;i<n;i++) {
if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+j]==y[sa[i-1]+j]) x[sa[i]]=p-1;
else x[sa[i]]=p++;
}
}
for(i=1;i<n;i++) rank[sa[i]]=i;
for(i=p=0;i<n-1;height[rank[i++]]=p)
for(p?p--:0,j=sa[rank[i]-1];r[i+p]==r[j+p];p++); }
int main() {
scanf("%s",s);
n=strlen(s);
int i;
ll sum=1ll*n*(n+1)*(n-1)/2;
for(i=0;i<n;i++) r[i]=s[i];
r[n++]=0;
build_suffix_array();
for(i=0;i<n;i++) {
while(top&&height[i]<height[S[top]]) top--;
int j=S[top];
f[i]=f[j]+1ll*(i-j)*height[i]; sum-=2*f[i];
S[++top]=i;
}
printf("%lld\n",sum);
}
BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈的更多相关文章
- BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】
题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...
- BZOJ_3238_[Ahoi2013]差异_后缀自动机
BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- [BZOJ 3238] [AHOI 2013] 差异 【后缀数组 + 单调栈】
题目链接:BZOJ - 3238 题目分析 显然,这道题就是求任意两个后缀之间的LCP的和,这与后缀数组的联系十分明显. 求出后缀数组后,求出字典序相邻两个后缀的LCP,即 Height 数组. 那么 ...
- [bzoj3238]差异(后缀数组+单调栈)
显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去.所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的. 接下来问题就是 ...
- 【BZOJ-3238】差异 后缀数组 + 单调栈
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1561 Solved: 734[Submit][Status] ...
- 【BZOJ3879】SvT 后缀数组+单调栈
[BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...
- BZOJ_3879_SvT_后缀数组+单调栈
BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...
- BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)
BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...
随机推荐
- 类似Jquery ui 标签页(Tabs)
<div class="indexnew_tit"> <a href="javascript:;" class="on"& ...
- iOS开发常用第三方库
UI 动画 网络相关 Model 其他 数据库 缓存处理 PDF 图像浏览及处理 摄像照相视频音频处理 响应式框架 消息相关 版本新API的Demo 代码安全与密码 测试及调试 AppleWatch ...
- ambari2.6.1汉化记录
1.1测试机 Apache hadoop2.6Apache ambari 2.6.1集群规模:单节点操作系统 CentOS7以下所有操作均在root用户下执行 1.2安装环境 安装Maventar - ...
- Linux中使用export命令设置环境变量
Linux export 命令 2011-08-31 22:36:39| 分类: 命令总结|举报|字号 订阅 功能说明:设置或显示环境变量. ######################## ...
- 玩转Git入门篇
最近项目使用到Git管理项目,所以就学习了一番,随然网上关于 Git的文章铺天盖地,我还是整理下总结下自己学习Git相关笔记,希望也能帮助到需要他的小伙伴们,O(∩_∩)O~ 简介 Git 是分布式版 ...
- JS(原生js和jq方式)获取元素属性(自定义属性),删除属性(自定义属性)
JS(原生js和jq方式)获取元素属性(自定义属性),删除属性(自定义属性) 以下内容: 一.获取元素的属性 二.设置元素的属性 三.删除元素的属性 一.获取元素的属性 1-原生JS 获取属性 .ge ...
- es6(二):解构赋值
ES中允许按照一定格式从数组,对象值提取值,对变量进行赋值,这就是解构(Destructuring) let [a,b,c]=[1,10,100] console.log(a,b,c)//1 10 1 ...
- [ Java面试题 ] 集合篇
1.ArrayList和Vector的区别 这两个类都实现了List接口(List接口继承了Collection接口),他们都是有序集合,即存储在这两个集合中的元素的位置都是有顺序的,相当于一种动态的 ...
- Django REST framework+Vue 打造生鲜超市(十三)
目录 生鲜超市(一) 生鲜超市(二) 生鲜超市(三) 生鲜超市(四) 生鲜超市(五) 生鲜超市(六) 生鲜超市(七) 生鲜超市(八) 生鲜超市(九) 生鲜超市(十) ...
- git基础命令学习总结
git版本升级 git clone git://git.kernel.org/pub/scm/git/git.git 列出所有 Git 当时能找到的配置 git config --list git c ...