【原创】源码角度分析Android的消息机制系列(四)——MessageQueue的工作原理
ι 版权声明:本文为博主原创文章,未经博主允许不得转载。
MessageQueue,主要包含2个操作:插入和读取。读取操作会伴随着删除操作,插入和读取对应的方法分别为enqueueMessage和next,其中enqueueMessage的作用是往消息队列中插入一条消息,而next的作用是从消息队列中取出一条消息并将其从消息队列中移除。虽然MessageQueue叫消息队列,但是它的内部实现并不是用的队列,实际上它是通过一个单链表的数据结构来维护消息列表,单链表在插入和删除上比较有优势。
先看MessageQueue的定义:
/**
* Low-level class holding the list of messages to be dispatched by a
* {@link Looper}. Messages are not added directly to a MessageQueue,
* but rather through {@link Handler} objects associated with the Looper.
*
* <p>You can retrieve the MessageQueue for the current thread with
* {@link Looper#myQueue() Looper.myQueue()}.
*/
public final class MessageQueue
通过源码我们可以知道,MessageQueue维护了一个消息列表。Messgae并不是直接添加到MessageQueue中,而是通过和Looper相关联的Handler来添加的。在当前线程中可以通过调用Looper.myQueue()方法来获取当前线程的MessageQueue。
下面再看它的enqueueMessage插入方法:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
} synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
} msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
} // We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
在Message的源码中定义了一个成员属性target,其类型为Handler。由上面enqueuMessage的源码,我们可以看到,当Message没有处理其的Handler或该Message正在被处理的时候,都不能正常进入MessageQueue,这一点也是很容易理解的。当线程处于死亡状态的时候,Message会被回收掉,而不再进入该线程对应的MessageQueue中。否则,一切正常,enqueMessage就执行单链表的插入操作,将Message插入到MessageQueue中。
再来看MessageQueue的next读取操作:
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
} int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
} nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
} // Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
} // If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
} if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
} // Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
} if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
} // Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
通过源码我们可以知道,next方法会不停地去循环读取MessageQueue中的Message。若MessageQueue中没有消息了,则next方法会暂时阻塞( nextPollTimeoutMillis = -1)。有消息到来时,next会继续读取消息,返回该消息,并将其从单链表中移除。
【原创】源码角度分析Android的消息机制系列(四)——MessageQueue的工作原理的更多相关文章
- 【原创】源码角度分析Android的消息机制系列(五)——Looper的工作原理
ι 版权声明:本文为博主原创文章,未经博主允许不得转载. Looper在Android的消息机制中就是用来进行消息循环的.它会不停地循环,去MessageQueue中查看是否有新消息,如果有消息就立刻 ...
- 【原创】源码角度分析Android的消息机制系列(六)——Handler的工作原理
ι 版权声明:本文为博主原创文章,未经博主允许不得转载. 先看Handler的定义: /** * A Handler allows you to send and process {@link Mes ...
- 【原创】源码角度分析Android的消息机制系列(一)——Android消息机制概述
ι 版权声明:本文为博主原创文章,未经博主允许不得转载. 1.为什么需要Android的消息机制 因为Android系统不允许在子线程中去访问UI,即Android系统不允许在子线程中更新UI. 为什 ...
- 【原创】源码角度分析Android的消息机制系列(二)——ThreadLocal的工作过程
ι 版权声明:本文为博主原创文章,未经博主允许不得转载. 在上一篇文章中,我们已经提到了ThreadLocal,它并非线程,而是在线程中存储数据用的.数据存储以后,只能在指定的线程中获取到数据,对于其 ...
- 【原创】源码角度分析Android的消息机制系列(三)——ThreadLocal的工作原理
ι 版权声明:本文为博主原创文章,未经博主允许不得转载. 先看Android源码(API24)中对ThreadLocal的定义: public class ThreadLocal<T> 即 ...
- 源码角度分析-newFixedThreadPool线程池导致的内存飙升问题
前言 使用无界队列的线程池会导致内存飙升吗?面试官经常会问这个问题,本文将基于源码,去分析newFixedThreadPool线程池导致的内存飙升问题,希望能加深大家的理解. (想自学习编程的小伙伴请 ...
- Android的Message Pool是什么——源码角度分析
原文地址: http://blog.csdn.net/xplee0576/article/details/46875555 Android中,我们在线程之间通信传递通常采用Android的消息机制,而 ...
- 【react】什么是fiber?fiber解决了什么问题?从源码角度深入了解fiber运行机制与diff执行
壹 ❀ 引 我在[react] 什么是虚拟dom?虚拟dom比操作原生dom要快吗?虚拟dom是如何转变成真实dom并渲染到页面的?一文中,介绍了虚拟dom的概念,以及react中虚拟dom的使用场景 ...
- 从源码角度理解android动画Interpolator类的使用
做过android动画的人对Interpolator应该不会陌生,这个类主要是用来控制android动画的执行速率,一般情况下,如果我们不设置,动画都不是匀速执行的,系统默认是先加速后减速这样一种动画 ...
随机推荐
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- hdu_1029_hash/map
http://acm.hdu.edu.cn/showproblem.php?pid=1029 太水了,一次过,直接上代码吧,只想说最愚蠢的hash都要比map快! #include<cstdio ...
- 记忆化搜索 dp学习~2
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331 Function Run Fun Time Limit: 2000/1000 MS (Java/ ...
- codeforces A. Orchestra B. Island Puzzle
A. Orchestra time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- ARM的GPIO配置
- UEP-标签
这里的标签都是常用不好理解的: formatfunc="showFormatNumer" 显示数字在页面上 ockedcolumnnum="6" 几列是不动的 ...
- file_get_contents("php://input")的使用方法
$data = file_get_contents("php://input"); //input 是个可以访问请求的原始数据的只读流. POST 请求的情况下,最好使用 php: ...
- 常用 Git 命令清单
http://www.ruanyifeng.com/blog/2015/12/git-cheat-sheet.html 我每天使用 Git ,但是很多命令记不住. 一般来说,日常使用只要记住下图6个命 ...
- NSLog( @"%@", i );
NSLog( @"%@", i ); %@需要显示对象,所以这个i必须是个对象类型.
- MySQL字符集设置—MySQL数据库乱码问题
MySQL(4.1以后版本) 服务器中有六个关键位置使用了字符集的概念,他们是:client .connection.database.results.server .system.MySQL有两个字 ...