java集合之HashMap源码解读
源自:jdk1.8.0_121
HashMap
继承自AbstractMap
,实现了Map
、Cloneable
、Serializable
。
HashMap
内部是由数组、链表、红黑树实现的
变量
// 默认大小
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认负载因子,默认0.75,当数组
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 链表长度大于8的时候转红黑树
static final int TREEIFY_THRESHOLD = 8;
// 红黑树节点小于6的时候转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 转换为红黑树之前还得判断数组的容量是否大于64
static final int MIN_TREEIFY_CAPACITY = 64;
// 数组
transient Node<K,V>[] table;
transient Set<Map.Entry<K,V>> entrySet;
// 数组table的大小
transient int size;
// 操作次数
transient int modCount;
/**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
// 这个注释很关键,如果table数组还没被分配时,阈值threshold等于数组的数组容量,反之threshold = capacity * load factor
int threshold;
// 负载因子
final float loadFactor;
构造方法
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果数组为null或者数组的大小为0时,对数组进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 因为n为2的a次,(2^a - 1) & hash < 2^a,所以不会越界,当tab[i]为空时(索引不冲突),直接插入数组中
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 索引冲突时
else {
Node<K,V> e; K k;
// 第一个元素hash和key都冲突时
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 当p为红黑树时
else if (p instanceof TreeNode)
// Node转型TreeNode*
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 当p为链表时
else {
// 一直循环到链表的最后一个结点
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 当结点数大于等于8
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 链表转红黑树
treeifyBin(tab, hash);
break;
}
// 当hash和key都冲突时,也就是找到了此结点,用于替换
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// hash和key都冲突时,e才会不等于null
if (e != null) { // existing mapping for key
V oldValue = e.value;
// 如果onlyIfAbsent为false就不会替换原有的值
if (!onlyIfAbsent || oldValue == null)
// 替换原有的值
e.value = value;
afterNodeAccess(e);
// 返回被替换的值
return oldValue;
}
}
++modCount;
// 超过最大容量(length * Load factor)时,扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
tableSizeFor方法
// 返回一个最接近cap的2^n幂
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
get方法
// 通过key的和key的hash获取值
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 首先获取这个key所在的哪一个链表或者红黑树
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 如果头结点的key和hash都与要查找的相等时,直接返回头结点
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 头结点的下一个结点不为空时
if ((e = first.next) != null) {
// 红黑树结点,就查找红黑树
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 链表,就一直循环到匹配到的key,否则返回null
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
treeifyBin方法
// 将Node结点转换成TreeNode结点(其实也就是TreeNode结点的双向链表)
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 数组为空或者数组的大小小于64,扩容
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
// 第一个结点不为空时
else if ((e = tab[index = (n - 1) & hash]) != null) {
// hd 头结点,tl 尾结点
TreeNode<K,V> hd = null, tl = null;
do {
// 将Node结点转换成TreeNode结点
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
// 将红黑树结点树形化
hd.treeify(tab);
}
}
内部类
HashMap$TreeNode类(红黑树结点)
红黑树的特性
- 每个结点是红色或者黑色。
- 根结点是黑色。
- 每个叶子节点(NIL)是黑色。
- 如果一个节点是红色的,则它的子节点必须是黑色的。
- 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
treeify方法
将红黑树结点树形化,变成红黑树的结构。【暂未深入了解】
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
// 确认根结点,黑色
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
// 根结点(p)的hash > 要插入结点(x)的hash时
// 插入到根结点的左边
if ((ph = p.hash) > h)
dir = -1;
// 插入到根结点的右边
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}
getTreeNode方法
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
疑问?
hash % 2^n == hash & (2^n-1)
hash % 2^n 余数是0~2^n-1
hash & (2^n-1) ,也就是取hash的后n位,后n位最大值是2^n-1
当hash = n时
hash | n | hash % 2^n | hash & (2^n-1) |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
... | ... | ... | ... |
n | n | n | n |
当hash = n-a时(hash < n)
hash | n | hash % 2^n | hash & (2^n-1) |
---|---|---|---|
0 | a | 0 | 0 |
1 | a+1 | 1 | 1 |
... | ... | ... | ... |
n-a | n | n-a | n-a |
当hash = n+a时(hash > n)
hash | n | hash % 2^n | hash & (2^n-1) |
---|---|---|---|
0 | -a | 0 | 0 |
1 | -a+1 | 1 | 1 |
... | ... | ... | ... |
n+a | n | n+a | n+a |
综上所述hash % 2^n == hash & (2^n-1)成立。
Node转型TreeNode(向下转型)
Node
跟TreeNode
都是HashMap
的内部类,怎么还能转型的呢?
// 在HashMap里内部类TreeNode继承了LinkedHashMap的内部类Entry
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V>
// 在LinkedHashMap里内部类Entry又继承了HashMap的内部类Node
static class Entry<K,V> extends HashMap.Node<K,V>
java集合之HashMap源码解读的更多相关文章
- 【转】Java集合:HashMap源码剖析
Java集合:HashMap源码剖析 一.HashMap概述二.HashMap的数据结构三.HashMap源码分析 1.关键属性 2.构造方法 3.存储数据 4.调 ...
- 【JAVA集合】HashMap源码分析(转载)
原文出处:http://www.cnblogs.com/chenpi/p/5280304.html 以下内容基于jdk1.7.0_79源码: 什么是HashMap 基于哈希表的一个Map接口实现,存储 ...
- Java集合:HashMap源码剖析
一.HashMap概述 HashMap基于哈希表的 Map 接口的实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.(除了不同步和允许使用 null 之外,HashMap ...
- 【Java集合】ArrayDeque源码解读
简介 双端队列是一种特殊的队列,它的两端都可以进出元素,故而得名双端队列. ArrayDeque是一种以循环数组方式实现的双端队列,它是非线程安全的. 它既可以作为队列也可以作为栈. 继承体系 Arr ...
- Java集合之HashMap源码实现分析
1.简介 通过上面的一篇随笔我们知道了HashSet的底层是采用Map实现的,那么Map是什么?它的底层又是如何实现的呢?这下我们来分析下源码,看看具体的结构与实现.Map 集合类用于存储元素对(称作 ...
- 死磕 java集合之HashMap源码分析
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 简介 HashMap采用key/value存储结构,每个key对应唯一的value,查询和修改 ...
- java集合之HashMap源码解析
Map是java中的一种数据结构,围绕着Map接口,有一系列的实现类如Hashtable.HashMap.LinkedHashMap和TreeMap.而其中HashMap和Hashtable我们平常使 ...
- java集合之ArrayList源码解读
源自:jdk1.8.0_121 ArrayList继承自AbstractList,实现了List.RandomAccess.Cloneable.Serializable. ArrayList内部是通过 ...
- Java集合之HashMap源码分析
以下源码均为jdk1.7 HashMap概述 HashMap是基于哈希表的Map接口的非同步实现. 提供所有可选的映射操作, 并允许使用null值和null健. 此类不保证映射的顺序. 需要注意的是: ...
随机推荐
- python使用tesseract-ocr完成验证码识别(模型训练和使用部分)
一.Tesseract训练 大体流程为:安装jTessBoxEditor -> 获取样本文件 -> Merge样本文件 –> 生成BOX文件 -> 定义字符配置文件 -> ...
- angular2 学习笔记 ( Rxjs, Promise, Async/Await 的区别 )
Promise 是 ES 6 Async/Await 是 ES 7 Rxjs 是一个 js 库 在使用 angular 时,你会经常看见这 3 个东西. 它们都和异步编程有关,有些情况下你会觉得用它们 ...
- Python 自动化 第一周
1.Python简介 1.1.Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯特丹打发时 ...
- Oracle update 执行更新操作后的数据恢复
操作数据库,经常会出现误操作,昨天执行的更新操作之后发现更新错了,只能想办法数据恢复了,现在整理一下 第一步:查询执行更新操作的时间 select r.FIRST_LOAD_TIME,r.* from ...
- POJ-1258 Agri-Net---MST裸题Prim
题目链接: https://vjudge.net/problem/POJ-1258 题目大意: 求MST 思路: 由于给的是邻接矩阵,直接prim算法 #include<iostream> ...
- 1.0 添加WEB API项目并按注释生成文档(多项目结构)
1.新建ASP.NET 项目,模板选择如图 2.选择Web API,并选择不进行身份验证方式 成功后我们看到这个结果. 至于其它三种身份验证方式,不太适合我的使用.而且这种方式也可以在代码里去实现身份 ...
- 简述angular自定义过滤器在页面和控制器中的使用
首先设置自定义过滤器. 定义模块名:angular ? 1 2 3 4 5 6 .module('myApp') .filter('filterName',function(){ return fun ...
- PHP 常用header头定义
在php的开发中,我们常常需要使用到header函数头来进行做标记 header() 函数向客户端发送原始的 HTTP 报头. 常用header设置列表如下: header('HTTP/1.1 200 ...
- Microsoft CRM-QueryExpression 成员
名称 ColumnSet 获取或设置要包含的列. Criteria 获取或设置过滤查询结果的复杂条件和逻辑过滤器表达式. Distinct 获取或设置查询的结果是否包含重复的实体实例. Entit ...
- c++简单线程池实现
线程池,简单来说就是有一堆已经创建好的线程(最大数目一定),初始时他们都处于空闲状态,当有新的任务进来,从线程池中取出一个空闲的线程处理任务,然后当任务处理完成之后,该线程被重新放回到线程池中,供其他 ...