题目链接

思路

真板子题。割点是指在一个无向图中,删去之后图将不再连通的点。可以用tarjan算法求。根据割点有两种情况,一种是根,一种是非根。如果不是根的就去判断在tarjan的时候当前节点所能到的最靠上的点。如果最靠上的点在当前点的下面,那么当前点就是割点,否则不是。对于是根的点。只要判断是不是可以从儿子中搜两遍就可以了。

代码

#include<cstdio>
#include<iostream>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long ll;
const int N = 20000 + 100,M = 100000+100;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
struct node {
int v,nxt;
}e[M * 2];
int ejs,head[N],dfn[N],low[N],ans[N];
void add(int u,int v) {
e[++ejs].v = v;e[ejs].nxt = head[u]; head[u] = ejs;
}
int now;
int js;
int rd;
void tarjan(int u) {
int rd = 0;
low[u] = dfn[u] = ++js;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if(!dfn[v]) {
tarjan(v);
if(u == now)
rd++;
low[u] = min(low[u],low[v]);
if(low[v] >= dfn[u] && u != now) ans[u] = 1;//!!!
}
else low[u] = min(low[u],dfn[v]);
}
if(rd >= 2 && u == now ) ans[u] = 1;
return;
}
int main() {
int n = read(), m = read();
for(int i = 1;i <= m;++i) {
int u = read(), v = read();
add(u,v); add(v,u);
}
for(int i = 1;i <= n;++i) {
if(!dfn[i]) {
now = i;
tarjan(i);
}
}
int tot = 0;
for(int i =1; i <= n;++i)
if(ans[i]) tot++;
printf("%d\n",tot);
for(int i = 1; i <= n;++i)
if(ans[i]) printf("%d ",i);
return 0;
}

一言

心上有个人,才能活下去。 ——病相笔记

[luogu3388][割点]的更多相关文章

  1. luogu3388 【模板】割点(割顶)

    模板题 #include <iostream> #include <cstdio> using namespace std; struct Edge{ int too, nxt ...

  2. HDU4738 tarjan割边|割边、割点模板

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4738 坑点: 处理重边 图可能不连通,要输出0 若求出的结果是0,则要输出1,因为最少要派一个人 #inc ...

  3. ACM/ICPC 之 Dinic+枚举最小割点集(可做模板)(POJ1815)

    最小割的好题,可用作模板. //Dinic+枚举字典序最小的最小割点集 //Time:1032Ms Memory:1492K #include<iostream> #include< ...

  4. 洛谷P3388 【模板】割点

    给出一个n个点,m条边的无向图,求图的割点. u是cut vertex的两个条件: 1.存在v使v及其所有后代没有反向边连回u的祖先 2.u是根且有两个以上子节点 dfs一遍 low[u]是u及其后代 ...

  5. 【UOJ#67】新年的毒瘤 Tarjan 割点

    #67. 新年的毒瘤 UOJ直接黏贴会炸...    还是戳这里吧: http://uoj.ac/problem/67#tab-statement Solution 看到这题的标签就进来看了一眼. 想 ...

  6. hihoCoder 1183 连通性一·割边与割点(Tarjan求割点与割边)

    #1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢 ...

  7. {part1}DFN+LOW(tarjan)割点

    什么是jarjan? 1)求割点 定义:在无向连通图中,如果去掉一个点/边,剩下的点之间不连通,那么这个点/边就被称为割点/边(或割顶/桥). 意义:由于割点和割边涉及到图的连通性,所以快速地求出割点 ...

  8. 图的割点 | | jzoj【P1230】 | | gdoi | |备用交换机

    写在前面:我真的不知道图的割点是什么.... 看见ftp图论专题里面有个dfnlow的一个文档,于是怀着好奇的心情打开了这个罪恶的word文档,,然后就开始漫长的P1230的征讨战.... 图的割点是 ...

  9. 割点和桥---Tarjan算法

    使用Tarjan算法求解图的割点和桥. 1.割点 主要的算法结构就是DFS,一个点是割点,当且仅当以下两种情况:         (1)该节点是根节点,且有两棵以上的子树;         (2)该节 ...

随机推荐

  1. csrf补充

    问csrftoken在Django里面是基于什么实现的?------>中间件. 如果是Django表示每次发请求过来的时候,要检验有没有带随机字符串.当在执行视图函数之前,前面还有一道屏障,这个 ...

  2. java 中Excel的导入导出

    部分转发原作者https://www.cnblogs.com/qdhxhz/p/8137282.html雨点的名字  的内容 java代码中的导入导出 首先在d盘创建一个xlsx文件,然后再进行一系列 ...

  3. Appscanner实验还原code2

    import _pickle as pickle from sklearn import svm, ensemble import random from sklearn.metrics import ...

  4. python爬虫之scrapy文件下载

    我们在写普通脚本的时候,从一个网站拿到一个文件的下载url,然后下载,直接将数据写入文件或者保存下来,但是这个需要我们自己一点一点的写出来,而且反复利用率并不高,为了不重复造轮子,scrapy提供很流 ...

  5. requests 使用免费的代理ip爬取网站

    import requests import queue import threading from lxml import etree #要爬取的URL url = "http://xxx ...

  6. Python turtle绘制阴阳太极图代码解析

    本文详细分析如何使用Python turtle绘制阴阳太极图,先来分解这个图形,图片中有四种颜色,每条曲线上的箭头表示乌龟移动的方向,首先从中心画一个半圆(红线),以红线所示圆的直径作半径画一个校园, ...

  7. 在Hmtl页面中只让其中单独的一个div隐藏滚动条但是仍可滚动浏览下边的内容

    <style> .box ::-webkit-scrollbar {width: 0px;} </style> <div class="box"> ...

  8. MySQL系列:视图基本操作(3)

    1. 视图简介 1.1 视图定义 视图是一种虚拟的表,是从数据库中一个或多个表中导出来的表. 视图可以从已存在的视图的基础上定义. 数据库中只存放视图的定义,并没有存放视图中的数据,数据存放在原来的表 ...

  9. jQuery的each使用陷阱

    注意:jQuery使用each()函数进行循环时发现return false不能阻止程序继续向下执行 原因如下: (1)开始还以为是jQuery的each()函数是异步执行的,所以导致出错,其实不是. ...

  10. qtp自动化测试-条件语句 if select case

    1 if 语句 if  condition  then end if If condition Then   [statements] [ElseIf condition-n Then   [else ...