To the Max
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 54338   Accepted: 28752

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner:

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2

Sample Output

15

就是最大字段和的升级版,
从:http://www.cnblogs.com/fll/archive/2008/05/17/1201543.html 可知:

假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
  | a11 …… a1i ……a1j ……a1n |
  | a21 …… a2i ……a2j ……a2n |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ar1 …… ari ……arj ……arn |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ak1 …… aki ……akj ……akn |
  |  .     .     .    .    .     .    .   |
  | an1 …… ani ……anj ……ann |

那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
 (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
 由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

就是先让i从0到n遍历,然后j从i到n遍历,最后在第j行中k从0到n遍历,用一个数组分别保存每个列的各行的数字之和,就可以化为最大连续和(降维)。

复杂度为:O(n^3)

C++代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = ;
int d[maxn][maxn];
int s[maxn];
int INF = -0x3f3f3f3f; int MaxArray(int a[],int n){
int m = INF;
int tmp = -;
for(int i = ; i < n; i++){
if(tmp > )
tmp += a[i];
else
tmp = a[i];
if(tmp > m)
m = tmp;
}
return m;
} int main(){
int n;
scanf("%d",&n);
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
scanf("%d",&d[i][j]);
}
}
int ans = INF,tmp;
for(int i = ; i < n; i++){
memset(s,,sizeof(s));
for(int j = i; j < n; j++){
for(int k = ; k < n; k++){
s[k] += d[j][k];
}
tmp = MaxArray(s,n);
if(tmp > ans)
ans = tmp;
}
}
printf("%d\n",ans);
return ;
}

(线性dp 最大子段和 最大子矩阵和)POJ1050 To the Max的更多相关文章

  1. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  2. 线性DP总结(LIS,LCS,LCIS,最长子段和)

    做了一段时间的线性dp的题目是时候做一个总结 线性动态规划无非就是在一个数组上搞嘛, 首先看一个最简单的问题: 一,最长字段和 下面为状态转移方程 for(int i=2;i<=n;i++) { ...

  3. 洛谷P1115 最大子段和 (线性DP)

    经典的线性DP例题,用f[i]表示以第i个位置结尾的最大连续子段和. 状态转移方程:f[i]=max(f[i],f[i-1]+a[i]); 这里省去了a数组,直接用f数组读数据,如果f[i-1]< ...

  4. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  5. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  6. 线性DP 学习笔记

    前言:线性DP是DP中最基础的.趁着这次复习认真学一下,打好基础. ------------------ 一·几点建议 1.明确状态的定义 比如:$f[i]$的意义是已经处理了前$i个元素,还是处理第 ...

  7. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  8. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  9. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

随机推荐

  1. Directory of X:\EFI\Microsoft\Boot

    Directory of X:\EFI\Microsoft\Boot 2017/06/21 15:14 <DIR> . 2017/06/21 15:14 <DIR> .. 20 ...

  2. 学习 Spring (十二) AOP 基本概念及特点

    Spring入门篇 学习笔记 AOP: Aspect Oriented Programming, 通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术 主要功能是:日志记录.性能统计.安全控 ...

  3. xshell使用rz/sz完成文件上传下载

    yum -y install lrzsz 安装lrzsz 使用rz完成文件上传 使用sz完成文件下载

  4. Codeforces1023E Down or Right 【贪心】

    题目分析: 从起点开始询问终点连通性,优先右走.从终点开始询问起点连通性,优先上走. 代码: #include<bits/stdc++.h> using namespace std; in ...

  5. 洛谷P1216数字三角形题解

    题目 这道题是一个典型的DP,可以用倒推,顺推的方法,来解这道题.当然用不同的方法他的循环次序是不一样的,所以我们一定要深刻地理解题目的大意,再采用状态转移方程与边界每次求出最优解,并记录循环一遍后就 ...

  6. xml 模块

    XML ———可扩展的标记语言 也是一种通用的数据格式 之所以用它 也是因为跨平台 XML 的语法格式: 1,任何的起始标签都必须有一个结束标签. <> 起始标签 </>结束标 ...

  7. 卢卡斯定理&扩展卢卡斯定理

    卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cd ...

  8. 爬虫_淘宝(selenium)

    总体来说代码还不是太完美 实现了js渲染网页的解析的一种思路 主要是这个下拉操作,不能一下拉到底,数据是在中间加载进来的, 具体过程都有写注释 from selenium import webdriv ...

  9. Android studio preview界面无法预览,报错render problem

    1.查看报错信息,如果有报错,该叹号应为红色,点击查看报错,显示为render problem 2.打开res/styles.xml修改为如图,添加Base. 3.再打开preview界面

  10. Android多种方法显示当前日期和时间

    文章选自StackOverflow(简称:SOF)精选问答汇总系列文章之一,本系列文章将为读者分享国外最优质的精彩问与答,供读者学习和了解国外最新技术.本文探讨Android显示当前日期和时间的方法. ...