$CROI$ $R1$

  今天参加了一场比赛,什么比赛呢?CROI。

  CROI是什么呢? $Challestend$ $Rehtorbegnaro$ $OI$。总的来说就是我们机房的一些神仙出的题啦。

  这篇文章没有密码...被你发现啦!

  

  T1:Challestend and Hyperrectangle

  一道特别神仙的题目。

  题意概述一下:给出一个高维立方体的 $n$ 个边长,将它的表面刷上漆,再将它切成单位小块,求恰好有 $i$ 面被着色的小立方体个数,对998244353取模.$i \in [0,2n]$,$4<=n<=30000,1<=a_i<=2^{64}$.

  不会做呀...本来是有一点想法的,就是从一二三维的简单情况开始,进行类比,推出来一个比较科学的式子(它甚至可以过一个比较大的样例),但是对于 $a<=2$ 的情况就会崩溃,而且小一点的数据里每个都有这种情况,所以最后也没有分了。还是讲一下思路:

  一维:两个顶点,$a-2$个无色立方体;

  二维:四个顶点,$2\times(a-2+b-2)$个棱上的点,$(a-2)(b-2)$个无色立方体;

  三维:八个顶点,$4\times(a-2+b-2+c-2)$个棱上的点,$2\times((a-2)(b-2)+(a-2)(c-2)+(b-2)(c-2))$个面上的点,$(a-2)(b-2)(c-2)$个无色的;

  一维二维的可能比较难想,在这里放个图:

  

   

  这题比较玄学的一点就是怎么分辨 $n$ 维立方体的“面”,因为按照一般的思路来说,只有三维立方体才有“面”。不过通过看样例,可以发现这道题里的“面”指的就是 $n-1$ 维的空间啦。

  T2:Challestend and Anarchy Heap

  这道题还是比较简单的(虽然我没做出来)。

      

  题意概述:将斐波那契数顺次插入一个二叉堆,比较函数是随机的,问每次插入后堆顶的期望值的和,对998244353取模。$T<=400,1<=n<2^{64}$

  期望具有线性性,所以只要算出每个点作为堆顶的概率。虽然比较函数坏掉了,但是树的形态还是固定的。可以发现每次插入新数后,堆顶要么是新数,要么不变。考虑是新数的概率:新数运气超好,一路随机上来到了根,也就是$\frac{1}{2^{x}}$,(x=当前点离根节点的距离),其它情况下都继承原答案。递推可以做到 $O(N)$,但是显然跑不过,所以可以矩乘,由于深度不固定,还得分段矩乘,有一点难写。

  T3:Challestend and Summation

  挺好的一道题,专治多项式学傻。

  对以下式子求值:$n<=1e7,m<=1000$,F是一个 $m$ 项多项式。

  $\sum_{i=1}^n\sum_{j|i}F(j) \space (\%998244353)$

  首先给大家表演一下多项式学傻的人的做法:

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_ij^i$

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_i\sum_{k=1}^jS(i,k)\binom{j}{k}k!$

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_i\sum_{k=1}^jS(i,k)\frac{j!}{k!(j-k)!}k!$

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_i\sum_{k=1}^mS(i,k)\frac{j!}{(j-k)!}$

  $\sum_{i=0}^{m-1}a_i\sum_{k=1}^mS(i,k)\sum_{j=1}^n\frac{n}{j}\frac{j!}{(j-k)!}$

  第二类斯特林太妙啦,可以将很大的幂指数换成好求很多的阶乘!没错我当时就是这么想的。

  

  后来又想了一下才发现...画到第一步时已经是一个很显然的整除分块形式,只要能快速求出 $f$ 的前缀和即可。而通过一些函数知识可以得到,$m$ 次函数的前缀和是一个 $m+1$ 次的函数,所以插值即可。注意这里不能写 $m^2$ 的插值,要优化一下到 $m$.

  

 # include <cstdio>
# include <iostream>
# define R register int
# define ll long long using namespace std; const int mod=;
const int maxn=;
int n,m,a[maxn],k;
int ans,sx[maxn],f[maxn],inv[maxn],x[maxn],y[maxn]; ll cal (ll x)
{
ll s=,ans=;
for (R i=;i<m;++i)
{
ans=(ans+1LL*a[i]*s)%mod;
s=s*x%mod;
}
return ans;
} ll qui (ll a,ll b)
{
ll s=;
while(b)
{
if(b&) s=s*a%mod;
a=a*a%mod;
b>>=;
}
return s;
} ll S (int v)
{
if(v<=m) return y[v];
ll ans=;
for (R i=;i<=m;++i)
ans=(ans+1LL*y[i]*sx[i]%mod*(1LL*f[v]*inv[v-i]%mod*f[v-i-]%mod*inv[v--m]%mod))%mod;
return ans;
} int main()
{
scanf("%d%d",&n,&m); k=m;
for (R i=;i<m;++i) scanf("%d",&a[i]);
for (R i=;i<=m;++i)
{
x[i]=i;
y[i]=cal(i);
y[i]=(y[i]+y[i-])%mod;
}
f[]=;
for (R i=;i<=n;++i) f[i]=1LL*f[i-]*i%mod;
inv[n]=qui(f[n],mod-);
for (R i=n;i>=;--i) inv[i-]=1LL*inv[i]*i%mod;
for (R i=;i<=k;++i)
{
sx[i]=;
for (R j=;j<=k;++j)
{
if(i==j) continue;
sx[i]=1LL*sx[i]*(x[i]-x[j]+mod)%mod;
}
sx[i]=qui(sx[i],mod-);
}
int l=,r;
while(l<=n)
{
r=n/(n/l);
ans=(ans+1LL*(n/l)*((S(r)-S(l-))%mod+mod)%mod)%mod;
l=r+;
}
printf("%d\n",ans);
return ;
}

C

  T4:Challestend and the Second War against Duliu

  一看题目就可以发现这道题“Duliu”的本质了。

  简单的说:给定一个长度为 $n$ 的数列以及 $n$ 个观察者,每个观察者可以看到 $[l_i,r_i]$ 的一段区域,要求支持如下操作:

  对数列区间加;查询一段编号连续的观察者所能看到的值的和;修改某个观察者的观察区域。

  $n,m<=10^5$

  这题能做?$O(N\sqrt{N}logN)$ 的做法其实不是特别难想,但是似乎会被卡常。另注:这题的最大难点在于读题。

  刚刚听了题解,感觉学到了很多东西,原来分块可以做到 $O(\sqrt{N})$ 区间加,$O(1)$ 区间查询,实在是非常神奇。

  那么这里先写抄一份正常解法:

  首先考虑分块维护区间和,有一个比较巧妙的做法是对于每个块维护和,再对于每个点维护块内的前后缀和,这样就可以做到 $O(1)$ 区间查询了。如果直接把这个做法扩展到区间加上复杂度就崩了,因为每次要打很多的标记。考虑对于每个块维护一个delta,表示未下放的标记...但是每个点得到的标记的实际值和它的位置是有关的,所以这里有两个做法:1.差分;2.delta标记变为维护一个等差数列的首项和公差;再用这种巧妙的分块代替原先的树状数组,即可通过本题 $O(N\sqrt{N})$

  下面是我的乱搞做法:

  对于观察者序列分块,每个块内维护一个长度为 $n$ 的数组,每个位置上的值表示这个块内的观察者有多少能看到这个位置。修改时,对于每个块计算贡献;查询时,整块可以直接得到答案,散点暴力查询。修改观察区间则更简单,只需要在相应的块内做一些处理就可以了。这里需要一个区间修改的数据结构,选择树状数组。

  这样做的问题在于每个操作之间的复杂度过于不平衡,所以用 a,b,c 表示三个操作的操作次数,m表示分块大小,得到下式:

  $a\frac{N}{M}logN+b\frac{N}{M}+bMlogN+clogN$

  这样就可以用...模拟退火得到最优的块大小!

  ---shzr

CROI R1的更多相关文章

  1. PP66 EEPPPPMM SSyysstteemm AAddmmiinniissttrraattiioonn GGuuiiddee 16 R1

    ※★◆●PP66 EEPPPPMM SSyysstteemm AAddmmiinniissttrraattiioonn GGuuiiddee 16 R1AApprriill 22001166Conte ...

  2. P6 EPPM Installation and Configuration Guide 16 R1 April 2016

    P6 EPPM Installation and Configuration Guide 16 R1         April 2016 Contents About Installing and ...

  3. P6 EPPM 16 R1 文档和帮助系统

    P6 EPPM 16 R1 文档和帮助系统 https://docs.oracle.com/cd/E74894_01/ http://docs.oracle.com/cd/E68202_01/clie ...

  4. P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1

    P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1       May ...

  5. 位运算取第一个非0的位 r & (~(r-1))

    Single Number III Given an array of numbers nums, in which exactly two elements appear only once and ...

  6. Intersoft Mobile Studio 2013 R1 SP1 Crack

    Intersoft Mobile Studio 2013 R1 SP1 (iOS, Android & WinR) Leave a comment   tweet       inShare ...

  7. 洛谷3月月赛 R1 Step! ZERO to ONE

    洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...

  8. SDOI 2019 R1游记

    $SDOI$ $2019$ $R1$游记 昨天才刚回来,今天就来写游记啦! Day -5: 做了一下去年省选的Day1,感觉很神仙. Day -4: 做了一下去年省选的Day2,感觉还是很神仙. Da ...

  9. SDOI2017 R1做题笔记

    SDOI2017 R1做题笔记 梦想还是要有的,万一哪天就做完了呢? 也就是说现在还没做完. 哈哈哈我竟然做完了-2019.3.29 20:30

随机推荐

  1. log4j介绍

    log4j.properties文件的三种加载方式 1.默认自动加载 满足以下条件时: 1).配置文件名为log4j.properties 2).在classpath根目录下(即resources根目 ...

  2. vue2.4+vue-cli+webpack history模式打包后 刷新404

    开启HTML5 History Mode后,尤其需要server端的支持,官方文档里就有介绍:(传送门: https://router.vuejs.org/zh-cn/essentials/histo ...

  3. js 处理金额各个位数上的值

    //金额处理 var number = 1234567.35; if (parseInt(number) == number) { var money = number.toString().spli ...

  4. java对程序的简单加密

    File file = new File("oppo.in"); File file1 = new File("main.in"); GregorianCale ...

  5. iOS--------获取当前连接的WiFi以及IP地址

    导入头文件 #import <ifaddrs.h>#import <arpa/inet.h>#import <SystemConfiguration/CaptiveNet ...

  6. Html富文本编辑器

    本文推荐两款简单的富文本编辑器[KindEditor,NicEdit]用于获得所见即所得的编辑效果,本文仅供学习分享使用,如有不足之处,还请指正. 概述 这两款编辑器都是采用JavaScript编写, ...

  7. react 会员登录

    会员登录在我们的好多项目中都有用到,比如在后台管理系统,它的第一步就需要你进行登录,还有在我们常见的京东.淘宝.网易云音乐等一系列的软件上面都需要进行登录. 下面我们直接上代码 fetch(url,{ ...

  8. python leetcode 字符串相乘

    给定两个以字符串形式表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积,它们的乘积也表示为字符串形式. 示例 1: 输入: num1 = "2", num ...

  9. (python)数据结构---字符串

    一.概述 由一个个字符组成的有序序列. 使用单引号.双引号.三引号引住的字符序列. 不可变.线性的数据结构. 二.字符串的相关操作 1.元素访问----下标 字符串是线性的数据结构,可以使用索引去访问 ...

  10. mac date命令详解

    Mac下的date命令是BSD(Berkeley Software Distribution)系的,Linux下date命令是GNU(GNU's Not Unix)系,二者用法有一些区别. BSD并不 ...