原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html

题目传送门 - 洛谷P3959

题目传送门 - Vijos P2032

题意

  给定一个 $n$ 个节点 $m$ 条边的无向图。

  现在请你在这个图之上生成一个有根树。

  记 $d_i$ 为节点 $i$ 的深度 $(d_{root}=0)$ ,记 $fadis_i$ 为节点 $i$ 到其父亲节点的连边中的最小边权。

  则这棵树的代价为

$$\sum_{i=1}^{n}(d_i\times fadis_i)$$

  问所有生成树中最小代价为多少。

  $1\leq n\leq 12,0\leq m\leq 1000, 边权\leq 500000$

题解

  我们记 $dp[x][d][s]$ 表示以 $x$ 为子树根,其深度为 $d$ ,要在该子树内完成集合 $s$ 中节点的连接,所需要花费的最小代价。

  则显然可以写出 DP 方程:

  (其中 $g[x][y]$ 代表 $x$ 到 $y$ 的最小边权)

$$dp[x][d][s]=\min(dp[y][d+1][s1 \backslash \{y\}]+g[x][y]\times (d+1)+dp[x][d][s-s1]\bigg| s1\subset s)$$

  至于集合 $s,s2$ 我们可以状压表示。

  现在我们来分析一下时间复杂度。

  首先我们看到前两维以及枚举 $y$ ,每一维一个 $O(n)$。

  最重要的是最后一维。

  这维的复杂度要和剩下的转移复杂度一起算,因为转移复杂度与这一维的数字有关。

  如果这一维集合 $|s|=i$ ,则有 $2^i$ 种子集。满足 $|s|=i$ 的 $s$ 有 $\binom{n}{i}$ 个。

  所以这两部分总的复杂度为:(其中要用到:二项式定理)

$$\begin{eqnarray*}\sum_{i=0}^{n}\binom{n}{i}2^i&=&\sum_{i=0}^{n}\binom{n}{i}2^i\times 1^{n-i}\\&=&(1+2)^n\\&=&3^n \end{eqnarray*}$$

  所以总的复杂度为 $O(n^33^n)$ ,注意常数大会被卡。

  写到这里不禁让我想起某猪。某猪他去年联赛当场写出 $O(n^23^n)$ 的做法,而我至今做出了这个做法,却懒得去做更好的。

  写到这里不禁让我想起某猪。Orz

  写到这里不禁让我想起某猪。我的洛谷本题提交记录的最前面永远的留下了他的代码,永远的留下了当年赌NOIP分数吃全家桶的记忆……

  写道这里,我不禁想起当年那些又吵又闹有骂有笑有他和他的开心的时光。

  写到这里,我又想起了当年天真的笑容们。过去的都过去了,他是否仍然是他?但愿如此,愿他一路顺风。

  不写下去了,不再憋着那泪,空自伤心罢。

代码

  !!!!!本代码在洛谷被卡常,需要开 $O2$ 才可以通过。!!!!!

#include <bits/stdc++.h>
using namespace std;
const int N=12,S=1<<N;
int n,m,g[N][N];
int s,sit[S][S],t[S];
int dp[N][N][S];
int DP(int x,int d,int s){
int &v=dp[x][d][s];
if (~v)
return v;
if (s==0)
return v=0;
v=1e9;
for (int i=1;i<t[s];i++){
int s1=sit[s][i],a=1e9;
for (int j=0;j<n;j++)
if (((s1>>j)&1)&&g[x][j]<1e9)
a=min(a,DP(j,d+1,s1^(1<<j))+(d+1)*g[x][j]);
v=min(v,a+DP(x,d,s^s1));
}
return v;
}
int main(){
scanf("%d%d",&n,&m);
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
g[i][j]=1e9;
while (m--){
int a,b,c;
scanf("%d%d%d",&a,&b,&c),a--,b--;
g[a][b]=g[b][a]=min(g[a][b],c);
}
s=1<<n;
for (int i=0;i<s;i++)
for (int j=0;j<s;j++)
if ((i|j)==i)
sit[i][t[i]++]=j;
memset(dp,-1,sizeof dp);
int ans=1e9;
for (int i=0;i<n;i++)
ans=min(ans,DP(i,0,(s-1)^(1<<i)));
printf("%d",ans);
return 0;
}

  

NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp的更多相关文章

  1. NOIP2017提高组Day2T3 列队 洛谷P3960 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/9265380.html 题目传送门 - 洛谷P3960 题目传送门 - LOJ#2319 题目传送门 - Vij ...

  2. 【noip2016提高组day2T3】【愤怒的小鸟】状压dp转移时的集合包含

    (上不了p站我要死了,图来自百度,侵权度娘背锅) 调死我了... 标题就说明了,死在了集合包含上.因为这道题与其他的状压题不同,其他的题基本上都是要求集合不重合,而这道题完全是可以的. 废话不多说,先 ...

  3. P1433 吃奶酪(洛谷)状压dp解法

    嗯?这题竟然是个绿题. 这个题真的不(很)难,我们只是不会计算2点之间的距离,他还给出了公式,这个就有点…… 我们直接套公式去求出需要的值,然后普通的状压dp就可以了. 是的状压dp. 这个题的数据加 ...

  4. [NOIP2013 提高组] 华容道 P1979 洛谷

    [NOIP2013 提高组] 华容道 P1979 洛谷 强烈推荐,更好的阅读体验 经典题目:spfa+bfs+转化 题目大意: 给出一个01网格图,和点坐标x,y空格坐标a,b,目标位置tx,ty要求 ...

  5. NOIP2017 宝藏 题解报告【状压dp】

    题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是 ...

  6. NOIP 2016 提高组 复赛 Day2T1==洛谷2822 组合数问题

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  7. NOIP2018&2013提高组T1暨洛谷P5019 铺设道路

    题目链接:https://www.luogu.org/problemnew/show/P5019 花絮:普及蒟蒻终于A了一道提高的题目?emm,写一篇题解纪念一下吧.求过! 分析: 这道题我们可以采用 ...

  8. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  9. 洛谷P3959 [NOIP2017]宝藏

    [题目描述] 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋,也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但 ...

随机推荐

  1. Light OJ 1148

    题意: 给你N 个人, 每个人说出有多少人和他一队, 不包括他自己, 输出总人数最少值 思路: 排个序, 按照给的数目把人分为一组,就可以得出最少人数 #include<bits/stdc++. ...

  2. Linux 安装Python和Django

    1.下载python源码包 网址: https://www.python.org/ 在Downloads中打开Source code 由于 Django1.11.15不兼容3.7版本的python 所 ...

  3. C#闰年判断

  4. Android 组件化方案探索与思考

    Android 组件化方案探索与思考 组件化项目,通过gradle脚本,实现module在编译期隔离,运行期按需加载,实现组件间解耦,高效单独调试. 本项目github地址 https://githu ...

  5. jdbctemplate 调用oracle 有返回(会话型临时表数据的)结果的存储过程

    注:本文为博主 原创. jdbctemplate 调用oracle存储过程 事务 临时表  有返回结果 1:java 代码 本逻辑代码本是想把 java 代码里的list<Strign>类 ...

  6. Guideline 5.2.1 - Legal - Intellectual Property 解决方案

    最近在上架公司公司项目的时候遇到这个问题什么5.2.1 然后去了解发现最近不少人都遇到了这个问题.先说一下 我上架的APP是一个医疗的APP然后说需要什么医疗资质,估计是账号的公司资质不够吧.后面和苹 ...

  7. HTML5-长按事件

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <title> ...

  8. bat如何实现多台android设备同时安装多个apk

    背景:在做预置资源(安装apk)时,有多台android设备需要做相同的资源(如:10台,安装10个apk).一台一台去预置的话(当然也可以每人一台去预置),耗时较长有重复性. 问题:如何去实现多台同 ...

  9. day14 迭代器 生成器 面向过程思想

    "" 迭代器 什么是迭代器(iterator) 器指的某种工具, 迭代指的是更新换代的过程,例如应用程序的版本更新从1.0 变成 1.1 再1.2 迭代的目的是要根据上一个结果,产 ...

  10. 波哥博客Url

    http://www.cnblogs.com/whatlonelytear/