题目描述

在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出满足 (1) X^A = B(mod 2*K + 1) (2) X 在范围[0, 2K] 内的X的个数!自然数论之神是可以瞬间秒杀此题的,那么你呢?

输入

第一行有一个正整数T,表示接下来的数据的组数( T <= 1000) 之后对于每组数据,给出了3个整数A,B,K (1 <= A, B <= 10^9, 1 <= K <= 5 * 10^8)

输出

输出一行,表示答案

样例输入

3
213 46290770 80175784
3 46290770 80175784
3333 46290770 80175784

样例输出

27
27
297
 

这题果然数论神题啊,写了三遍才A掉。做这题之前建议先做一下弱化版BZOJ1319
模数是$2*K+1$(我们设$P=2*K+1$),显然不一定是质数。一般碰到模数不是质数的情况我们会想能否将模数质因数分解成互质的几个数然后通过解决子问题来获得问题答案,这道题也是可以的,对于$P$将它质因数分解为$p_{1}^{a_{1}}*p_{2}^{a_{2}}*...*p_{k}^{a_{k}}$,然后分别解决$x^A\equiv B(mod\ p_{i}^{a_{i}})$的解的个数,再将每个子问题解个数相乘即可得到原问题解的个数。为什么?因为$x^A\equiv B(mod P)$即$x^A-n*P=B$,那么$x^A-n_{i}*p_{i}^{a_{i}}=B$(即将P的其他部分移到$n_{i}$中)。那么$x_{i}^A\equiv B(mod\ p_{i}^{a_{i}})$(不考虑$p_{i}^{a_{i}}$与$B$的大小关系),因为在原式中$x\in [0,P)$,而新式子中$x_{i}\in [0,p_{i}^{a_{i}})$,所以$x\equiv x_{i}(mod\ p_{i}^{a_{i}})$,对于这$k$个子问题每个求出一个解$x_{i}$,用中国剩余定理都能求出唯一的原式解$x$。
现在考虑如何解决$x_{i}^A \equiv B(mod\ p_{i}^{a_{i}})$,先考虑$B$与$p_{i}^{a_{i}}$的关系:
1、$gcd(B,p_{i}^{a_{i}})=p_{i}^{a_{i}}$,即$B$是$p_{i}^{a_{i}}$的倍数,那么$x_{i}^A$中至少要有$p_{i}^{a_{i}}$,$x_{i}$中至少要有$p_{i}^{\left \lceil \frac{a_{i}}{A} \right \rceil}$,所以$x_{i}$要是$p_{i}^{\left \lceil \frac{a_{i}}{A} \right \rceil}$的倍数,在$[0,p_{i}^{a_{i}})$中这样的数个数为$p_{i}^{a_{i}-\left \lceil \frac{a_{i}}{A} \right \rceil}$。
2、$gcd(B,p_{i}^{a_{i}})=1$,我们求出$p_{i}^{a_{i}}$的原根$g$(求原根的方法是求出$\phi(p_{i}^{a_{i}})$的所有质因子$q_{1}...q_{k}$,然后从$2$开始枚举原根,如果一个数$G$满足$\forall G^{\frac{\phi(p_{i}^{a_{i}})}{q_{j}}}mod\ p_{i}^{a_{i}}\neq1$即为原根)。将$B$和$x_{i}$分别求出指标$indB$和$indx_{i}$,原式就变成了$A*indx_{i}\equiv indB(mod\ \phi(p_{i}^{a_{i}}))$,那么根据扩展欧几里得可知,若$indB\%gcd(A,\phi(p_{i}^{a_{i}})=0$,那么解的个数就是$gcd(A,\phi(p_{i}^{a_{i}})$。(解一下不定方程即可得到此结论)
3、$gcd(B,p_{i}^{a_{i}})>1$,设$B=m*p_{i}^{z}$,显然$x^A$中$p_{i}$的幂次只能是$z$,那么$A$必须是$z$的约数。我们将$x_{i}^A,B,p_{i}^{a_{i}}$都除掉$p_{i}^{z}$这一部分,问题就转化成第二种情况了。但并不是这样就完事了,我们发现原式中$x_{i}\in[0,p_{i}^{a_{i}}),\frac{x_{i}}{p_{i}^{\frac{z}{A}}}\in[0,p_{i}^{a_{i}-\frac{z}{A}})$,而除完的式子中的$x_{i}$(即原式中的$\frac{x_{i}}{p_{i}^{\frac{z}{A}}}$)$\in[0,p_{i}^{a_{i}-z})$,值域减小了,对于同余方程我们将值域扩大$k$倍,解的个数就会扩大$k$倍,所以最后还要乘上$p_{i}^{z-\frac{z}{A}}$。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define INF 2e9
using namespace std;
ll A,B,K;
ll g,f,p;
ll phi;
int T;
int prime[100010];
int cnt;
map<ll,int>mp;
ll quick(ll x,ll y,ll mod)
{
ll res=1ll;
while(y)
{
if(y&1)
{
res=res*x%mod;
}
x=x*x%mod;
y>>=1;
}
return res;
}
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll get_ori(ll mod,ll phi)
{
ll n=phi;
cnt=0;
for(int i=2;1ll*i*i<=phi;i++)
{
if(phi%i==0)
{
prime[++cnt]=i;
while(phi%i==0)
{
phi/=i;
}
}
}
if(phi!=1)
{
prime[++cnt]=phi;
}
for(int i=1;i<=n;i++)
{
bool flag=true;
for(int j=1;j<=cnt;j++)
{
if(quick(i,n/prime[j],mod)==1)
{
flag=false;
break;
}
}
if(flag)
{
return i;
}
}
}
ll BSGS(ll g,ll mod,ll x,ll phi)
{
ll n=ceil(sqrt(mod));
mp.clear();
ll sum=1ll;
for(int i=1;i<=n;i++)
{
sum*=g,sum%=mod;
mp[sum]=i;
}
ll num=1ll;
for(int i=0;i<=n;i++)
{
ll inv=quick(num,phi-1,mod)*x%mod;
if(mp[inv])
{
return i*n+mp[inv];
}
num*=sum,num%=mod;
}
}
ll solve(ll p,ll k)
{
ll mod=quick(p,k,INF);
if(B%mod==0)
{
return quick(p,k-(k-1)/A-1,INF);
}
ll b=B;
ll num=0;
while(b%p==0)
{
num++;
b/=p;
mod/=p;
k--;
}
if(num%A)
{
return 0;
}
ll phi=mod-(mod/p);
g=get_ori(mod,phi);
f=BSGS(g,mod,b,phi);
ll d=gcd(A,phi);
if(f%d)
{
return 0;
}
return d*quick(p,num-num/A,INF);
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld",&A,&B,&K);
ll ans=1ll;
p=2*K+1;
for(int i=2;1ll*i*i<=p;i++)
{
if(p%i==0)
{
int num=0;
while(p%i==0)
{
num++;
p/=i;
}
ans*=solve(i,num);
}
}
if(p!=1)
{
ans*=solve(p,1);
}
printf("%lld\n",ans);
}
}

BZOJ2219数论之神——BSGS+中国剩余定理+原根与指标+欧拉定理+exgcd的更多相关文章

  1. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  2. BZOJ2219 数论之神 数论 中国剩余定理 原根 BSGS

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2219.html 题目传送门 - BZOJ2219 题意 求同余方程 $x^A\equiv B \pmo ...

  3. 51Nod1123 X^A Mod B 数论 中国剩余定理 原根 BSGS

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求 ...

  4. BZOJ1319Sgu261Discrete Roots——BSGS+exgcd+原根与指标+欧拉定理

    题目描述 给出三个整数p,k,a,其中p为质数,求出所有满足x^k=a (mod p),0<=x<=p-1的x. 输入 三个整数p,k,a. 输出 第一行一个整数,表示符合条件的x的个数. ...

  5. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  6. 【BZOJ】【2219】数论之神

    中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...

  7. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  8. 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)

    F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format: ...

  9. 中国剩余定理(CRT)与欧拉函数[数论]

    中国剩余定理 ——!x^n+y^n=z^n 想必大家都听过同余方程这种玩意,但是可能对于中国剩余定理有诸多不解,作为一个MOer&OIer,在此具体说明. 对于同余方程: x≡c1(mod m ...

随机推荐

  1. React组件重构:嵌套+继承 与 高阶组件

    前言 在最近做的一个react项目中,遇到了一个比较典型的需要重构的场景:提取两个组件中共同的部分. 最开始通过使用嵌套组件和继承的方式完成了这次重构. 但是后来又用高阶组件重新写了一遍,发现更好一点 ...

  2. H5 65-清除浮动方式一

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. H5 video标签的属性

    35-video标签 video标签的属性 src: 用于告诉video标签需要播放的视频地址 autoplay: 用于告诉video标签是否需要自动播放视频 controls: 用于告诉video标 ...

  4. UVA - 12716 - 异或序列

    求满足GCD(a,b) = a XOR b; 其中1<=b <=a<=n. 首先做这道题需要知道几个定理: 异或:a XOR b = c 那么 a XOR c = b; 那么我们令G ...

  5. 出题人的女装(牛客练习赛38题B) (概率+分式运算)

    链接:https://ac.nowcoder.com/acm/contest/358/B来源:牛客网 出题人的女装 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他 ...

  6. iOS开发之线程组解决请求多个接口数据,完成后,再刷新界面

    1.多任务请求接口,完成后,在刷新数据,常用方法 2018年07月18日 16:34:38 hbblzjy 阅读数:1382 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...

  7. 现有n 个乱序数,都大于 1000 ,让取排行榜前十,时间复杂度为o(n), top10, 或者 topK,应用场景榜单Top:10,堆实现Top k

    一.topK python实现   def topk(k, lst): top = [0 for i in range(k)] #生成一个长度为K 的有序列表 for item in lst: #循环 ...

  8. python模块详解

    什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写的代码(.p ...

  9. from、where、group、with、having、order、union、limit 的使用

    顺序很重要 每次看数据库的一些语法时,都很自然的略过那一大堆的规则,比如说线下面这段select的语法: select [field1,field2...] func_namefrom table1, ...

  10. PAT L3-007 天梯地图

    https://pintia.cn/problem-sets/994805046380707840/problems/994805051153825792 本题要求你实现一个天梯赛专属在线地图,队员输 ...