题目分析:

首先不难注意到式子就是异或卷积,所以考虑用分治乘法推出优化方法。
我们把一个整体$f$拆成$f-,f\pm,f+$,然后另一个拆成$g-,g\pm,g+$.这样做的好处是能更清楚的分析问题。下面我们下宽油(大雾)。
发现三个部分要求的式子是在两者相乘中选不同的三个,所以我们发现三个部分中每取一个有相同。这样我们聚焦到$--,-\pm,-+$三个东西。观察二进制FWT,可以假想它们要使用到三次单位根。这样只需要把三个根错开排列就行了。
做分治乘法的时候注意把虚部的$I$记做$\sqrt{3}i$.

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; struct cn{int rl,vir;}e[]; // vir's real meaning is vir*sqrt(3) int iv2,iv3;
int m,n,t,p,phi;
int b3[],b[][];
cn val[maxn],f[maxn]; int W[maxn],L[maxn]; cn operator +(const cn& alpha,const cn& beta){
cn ans = (cn){alpha.rl+beta.rl,alpha.vir+beta.vir};
if(ans.rl >= p) ans.rl -= p;
if(ans.vir >= p) ans.vir -= p;
return ans;
}
cn operator *(const cn& alpha,const cn& beta){
cn ans = (cn){,};
ans.rl = (1ll*alpha.rl*beta.rl-3ll*alpha.vir*beta.vir)%p;
ans.rl += p; if(ans.rl >= p) ans.rl -= p;
ans.vir = (1ll*alpha.vir*beta.rl+1ll*alpha.rl*beta.vir)%p;
return ans;
}
cn operator *(const cn& alpha,const int& beta){
cn ans=alpha;ans.rl=(1ll*ans.rl*beta)%p;ans.vir=(1ll*ans.vir*beta)%p;
return ans;
} cn fast_pow(cn now,int pw){
int bit = ;cn ans = (cn){,},dt = now;
while(bit <= pw){
if(bit & pw) ans = ans*dt;
bit<<=;dt = dt*dt;
}
return ans;
}
int fast_pow(int now,int pw){
int bit = ,ans = ,dt = now;
while(bit <= pw){
if(bit & pw) ans = (1ll*ans*dt)%p;
bit<<=;dt = (1ll*dt*dt)%p;
}
return ans;
} void read(){
scanf("%d%d%d",&m,&t,&p);
b3[] = ; for(int i=;i<=m;i++) b3[i] = b3[i-]*;
n = b3[m];
for(int i=;i<n;i++) scanf("%d",&f[i].rl);
for(int i=;i<=m;i++){
for(int j=;i+j<=m;j++){
scanf("%d",&b[i][j]);
}
}
val[].rl = b[][];
for(int i=;i<n;i++){
W[i] = W[i/],L[i] = L[i/];
if(i % == ) L[i]++;
if(i % == ) W[i]++;
val[i].rl = b[W[i]][L[i]];
}
} void multi(int l,int r){
if(l == r-){
f[l] = f[l]*fast_pow(val[l],t);
}else{
int l1 = l+(r-l)/,l2 = l+*(r-l)/,d = l2-l1;
for(int i=;i<d;i++){
cn p1 = f[l+i],p2 = f[l1+i],p3 = f[l2+i];
f[l+i] = p1+p2+p3;
f[l1+i] = p1+e[]*p2+e[]*p3;f[l2+i] = p1+e[]*p2+e[]*p3;
p1 = val[l+i],p2 = val[l1+i],p3 = val[l2+i];
val[l+i] = p1+p2+p3;
val[l1+i] = p1+e[]*p2+e[]*p3;val[l2+i] = p1+e[]*p2+e[]*p3;
}
multi(l,l1); multi(l1,l2); multi(l2,r);
for(int i=;i<d;i++){
cn p1 = f[l+i],p2 = f[l1+i],p3 = f[l2+i];
f[l+i] = p1+p2+p3;
f[l1+i] = p1+e[]*p2+e[]*p3;f[l2+i] = p1+e[]*p2+e[]*p3;
f[l+i]=f[l+i]*iv3;f[l1+i]=f[l1+i]*iv3;f[l2+i]=f[l2+i]*iv3;
}
}
} void init(){
phi = p;int z = p;
for(int i=;i*i<=p;i++){
if(p % i == ){
while(p%i == ) p /= i;
phi = (phi/i)*(i-);
}
}
if(p != ) phi = (phi/p)*(p-); p =z;
iv2 = fast_pow(,phi-); iv3 = fast_pow(,phi-);
e[] = (cn){,}; e[] = (cn){p-iv2,iv2}; e[] = (cn){p-iv2,p-iv2};
} void work(){
multi(,n);//[0,n)
for(int i=;i<n;i++) printf("%d\n",f[i].rl);
} int main(){
read();
init();
work();
return ;
}

UOJ272 [清华集训2016] 石家庄的工人阶级队伍比较坚强 【分治乘法】的更多相关文章

  1. [清华集训2016]石家庄的工人阶级队伍比较坚强——三进制FWT

    题目链接: [清华集训2016]石家庄的工人阶级队伍比较坚强 题目大意:有$n=3^m$个人玩石头剪刀布,共$t$轮游戏,每轮每个人要和包括自己的所有人各进行$m$次石头剪刀布.每个人在$m$轮中的决 ...

  2. UOJ272. 【清华集训2016】石家庄的工人阶级队伍比较坚强 [FWT]

    UOJ 思路 很容易想到\(O(3^{3m}\log T)\)的暴力大矩乘,显然过不了. 我们分析一下每次转移的性质.题目给的转移方程是填表法,我们试着改成刷表法看看-- 发现好像没啥用. 注意到游戏 ...

  3. uoj#272. 【清华集训2016】石家庄的工人阶级队伍比较坚强

    http://uoj.ac/problem/272 这题的式子形式是异或卷积的三进制推广,因此可以设计一个类似fwt的变换,这里需要一个三次单位根$w$,满足$w^3\%p==1$且$(1+w+w^2 ...

  4. [uoj272]石家庄的工人阶级队伍比较坚强

    假设$x,y\in \{0,1,2\}$,则$x$能赢$y$(根据题中定义)当且仅当$x-y\equiv 1(mod\ 3)$ 定义$\ominus$为两数3进制下不退位的减法,$S_{x}$表示$x ...

  5. uoj#276. 【清华集训2016】汽水(分数规划+点分治)

    传送门 没想到点分治那一层-- 首先不难发现这是个分数规划,先把所有的边长减去\(k\),二分答案,设为\(mid\),就是要求路径平均值\(ans\in[-mid,mid]\) 先来考虑\(ans\ ...

  6. 【UOJ276】【清华集训2016】汽水(分数规划+点分治)

    点此看题面 大致题意: 给你一棵树,要求你选择一条树上路径,使得这条路径上边权的平均值与定值\(k\)的差的绝对值最小.求出这个最小值. 分数规划 看到平均值,首先就应该想到分数规划吧. 我们二分答案 ...

  7. UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]

    #274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...

  8. UOJ_274_[清华集训2016]温暖会指引我们前行_LCT

    UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...

  9. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

随机推荐

  1. 如何解决 Windows 实例出现身份验证错误及更正 CredSSP

    阿里云上的ESC赠送1核2G服务器,安装windows server 2016 Datacenter 3389远程登录时提示错误信息,参考阿里文档:https://help.aliyun.com/kn ...

  2. c++入门之浅入浅出类——分享给很多想形象理解的人

    引入类之前,首先引入一个古老的话题:类别,比如int ,char ,double:这些基本的类型方便了我们描述数据(请注意,这句话很重要),类型的存在就是为了方便我们描述数据的.而c++中的类其实作用 ...

  3. iOS--LaunchImage启动页设置及问题解决

    在Assets.xcassets中使用LaunchImage来设置启动图:   一.根据不同屏幕尺寸的需求设置不同的图片,可以参照下图: 1.点击Image.xcassets 进入图片管理,然后右击, ...

  4. 容器化-Docker介绍

    导读:本文章对Docker技术进行了介绍,阐述了Docker的技术发展历程.容器与虚拟机的差异.Docker原理.特点.Docker三组件和Docker带来的影响,为我们进一步理解Docker打下基础 ...

  5. latex 图片标题居中

    1.有一个全局图片标题居中的方法: \usepackage[justification=centering]{caption} 2.如果排版时有的图标题想左对齐,有的想居中,前一个方法就不好了,这里可 ...

  6. 如何使用RSS

    (转载: http://www.ruanyifeng.com/blog/2006/01/rss.html) 一. 自从我发现很多人不知道什么是RSS以后,我就一直想向大家介绍它,因为它太有用了,将来会 ...

  7. SQLServer数据库分页

    以  项目表 PM_Project  为例. PM_Project 全部内容如下(共6条数据): 一.Top – Not In - Top 方式分页 直接的,原始的,不采用函数,纯手动挡. 分步探索过 ...

  8. RESTful架构详解

    什么是REST REST全称是Representational State Transfer,中文意思是表述性状态转移,它首次出现在2000年Roy Fielding的博士论文中.Roy Fieldi ...

  9. centos 6.5 查看时区和设置时区

    centos6.x 和centos7.x在时区方面有点差距,本文是针对centos6.x进行介绍. 其实在我的一个博文里,在安装系统的时候就可以进行时区的设置,本文介绍的是用命令进行时区查看和设置. ...

  10. day84

    在建表写字端时,id可以不写,orm会自动创建 表模型如果不写主键,orm会自动创建一个主键 from django.db import models # Create your models her ...