The Unique MST POJ - 1679 次小生成树prim
求次小生成树思路: 先把最小生成树求出来 用一个Max[i][j] 数组把 i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过 把没有使用过的一条边加入最小生成树必然回形成一条回路 在这条回路中减去 除加入的边的权值最大的一条边 原图必然保持连通 (如果此时 权值最大的边和新加入的边权值相同 则存在 不同的最小生成树) 把每一条边加入再删除后 即可得出次小生成树
参考了: https://blog.csdn.net/qq_33951440/article/details/53084248
https://blog.csdn.net/li1615882553/article/details/80011884
https://www.cnblogs.com/kuangbin/p/3147329.html
#include <cstdio>
#include <cmath>
#include <algorithm>
#include<vector>
#include<iostream>
#include<cstring>
int ans;
const int maxn=+;
const int INF=;
int x[maxn],y[maxn];
int cost[maxn][maxn];
int pre[maxn];
int lowc[maxn];
int Max[maxn][maxn];
int vis[maxn];
int parent[maxn];
int used[maxn][maxn];
using namespace std;
int prim(int cost[][maxn],int n){
int ans=;
memset(vis,false,sizeof(vis));
memset(Max,,sizeof(Max));
memset(used,false,sizeof(used));
vis[]=;
pre[]=-;
for(int i=;i<n;i++){
lowc[i]=cost[][i];//刚开始只有v0在生成树中 生成树和不在生成树的距离 就是v0和 其他点的距离
pre[i]=;
}
for(int i=;i<n;i++){
int minc=INF;
int p=-;
for(int j=;j<n;j++){
if(!vis[j]&&minc>lowc[j]){//找出到树最短的变
minc=lowc[j];
p=j;
}
}
if(p==-)return -; //不连通
ans+=minc;
vis[p]=;
used[p][pre[p]]=used[pre[p]][p]=; //该边设置为已使用
for(int j=;j<n;j++){
if(vis[j])Max[j][p]=Max[p][j]=max(Max[j][pre[p]],minc);//更新 j到p 的最大权值的边
if(!vis[j]&&lowc[j]>cost[p][j]){
lowc[j]=cost[p][j]; //更新树到点的最短距离
pre[j]=p;//j点如果要进树 连p点 所以p就是j的父结点
}
}
}
return ans; } int smst(int cost[][maxn],int n){ //计算是否可以删除一条边 仍得到所有边权值不变
int minnum=INF;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
if(cost[i][j]!=INF&&!used[i][j]){
minnum=min(minnum,ans+cost[i][j]-Max[i][j]);
} }
}
return minnum;
} int main()
{
int t;
cin>>t;
while(t--){
int n,m;
scanf("%d%d",&n,&m);
int u,v,w;
for(int i=;i<n;i++){
for(int j=;j<n;j++){
if(i==j)cost[i][j]=;
else cost[i][j]=INF;
}
}
while(m--){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
u--,v--;
cost[u][v]=cost[v][u]=w;
}
ans=prim(cost,n);
if(ans==smst(cost,n)){
printf("Not Unique!\n");
}
else printf("%d\n",ans); }
return ;
}
The Unique MST POJ - 1679 次小生成树prim的更多相关文章
- The Unique MST POJ - 1679 (次小生成树)
Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...
- Day5 - G - The Unique MST POJ - 1679
Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...
- POJ 1679 The Unique MST 【最小生成树/次小生成树模板】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22668 Accepted: 8038 D ...
- poj1679 The Unique MST(判定次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23180 Accepted: 8235 D ...
- poj 1679 次小生成树
次小生成树的求法: 1.Prime法 定义一个二维数组F[i][j]表示点i到点j在最小生成树中的路径上的最大权值.有个知识就是将一条不在最小生成树中的边Edge加入最小生成树时,树中要去掉的边就是E ...
- K - The Unique MST - poj 1679
题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...
- (最小生成树 次小生成树)The Unique MST -- POJ -- 1679
链接: http://poj.org/problem?id=1679 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...
- The Unique MST POJ - 1679 最小生成树判重
题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...
- UVA 10462 Is There A Second Way Left?(次小生成树&Prim&Kruskal)题解
思路: Prim: 这道题目中有重边 Prim可以先加一个sec数组来保存重边的次小边,这样不会影响到最小生成树,在算次小生成树时要同时判断次小边(不需判断是否在MST中) Kruskal: Krus ...
随机推荐
- mysqlfrm
mysqlfrm可基于frm文件生成对应的表结构.常用于数据恢复场景. 其有两种操作模式. 1. 创建一个临时实例来解析frm文件. 2. 使用诊断模式解析frm文件. 以下表进行测试,看看, 1. ...
- ASP.NET MVC5+EF6+EasyUI 仓库管理系统
简介 此系统是在框架基础上叠加的仓库系统功能,同样是开源的,可以用于简单的仓库管理,您也可以在此基础上继续开发与完善! 仓库的框架功能会随着框架的升级而同样升级,仓库管理售价1666,已经购买过框架的 ...
- python 操作数据库
官方文档:https://www.python.org/dev/peps/pep-0249/ 1.创建connection,建立网络连接 MySQLdb.Connect(host,port,user, ...
- 2198: 小P当志愿者送餐
题目描述 在ICPC程序设计大赛期间,小P作为志愿者的任务是给各个学校送盒饭,小P一次最多可以携带M份盒饭.总共有N个学校来参加比赛,这N个学校的休息点在一条笔直的马路边一字排开,路的一头是小P取盒饭 ...
- 为什么HashMap初始大小为16,为什么加载因子大小为0.75,这两个值的选取有什么特点?
先看HashMap的定义: public class HashMap<K,V>extends AbstractMap<K,V>implements Map<K,V> ...
- Excel之批量改变特定字体颜色(转载)
改变单元格内部分特定字符的颜色,如果批量操作,需要用宏处理, 如下例,将范围内 所有字母A 变成红色 操作步骤:右键点击工作表标签,查看代码,如下代码复制进去Private Sub CommandBu ...
- asp.net mvc导出execl_转载
public FileResult ExportExcel() { var sbHtml = new StringBuilder(); sbHtml.Append("<table bo ...
- python--logging日志
一个非常详细的日志使用请看这里:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html # 导入日志模块 import loggin ...
- 【学亮IT手记】angularJS+select2多选下拉框实例
永远保持对大部分知识的好奇心,学习从不枯燥,也没有被逼学习一说,乐此不疲才是该有的心态和境界!!! 引入相关js库: html部分代码: angularJS定义数据源变量:
- day 7-8 协程
不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去调 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们 ...