【BZOJ2208】【JSOI2010】连通数 传递闭包
题目描述
定义一个图的连通度为图中可达顶点对的数目。给你一个\(n\)个点的有向图,问你这个图的连通度。
\(n\leq 2000,m\leq n^2\)
题解
一个很简单的做法就是传递闭包:像floyd算法一样处理两个点之间是否可达。
\]
但是这是\(O(n^3)\)的。
观察到用到的运算都是位运算,那就用bitset加速一下就行了。
时间复杂度:\(O(\frac{n^3}{64})\)(还是\(O(n^3)\))
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
bitset<2001> f[2010];
char s[2010];
int main()
{
int n;
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%s",s+1);
for(j=1;j<=n;j++)
if(s[j]-'0')
f[i].set(j);
f[i].set(i);
}
for(j=1;j<=n;j++)
for(i=1;i<=n;i++)
if(i!=j&&f[i][j])
f[i]|=f[j];
int s=0;
for(i=1;i<=n;i++)
s+=f[i].count();
printf("%d\n",s);
return 0;
}
【BZOJ2208】【JSOI2010】连通数 传递闭包的更多相关文章
- [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd
连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...
- bzoj2208 [Jsoi2010]连通数(scc+bitset)
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1879 Solved: 778[Submit][Status ...
- BZOJ2208 [Jsoi2010]连通数[缩点/Floyd传递闭包+bitset优化]
显然并不能直接dfs,因为$m$会非常大,复杂度就是$O(mn)$: 这题有三种做法,都用到了bitset的优化.第二种算是一个意外的收获,之前没想到竟然还有这种神仙操作.. 方法一:缩点+DAG上b ...
- [BZOJ2208][Jsoi2010]连通数 暴力枚举
Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...
- BZOJ2208: [Jsoi2010]连通数
tarjan缩点后拓扑排序,每一个点用一个bitset记录哪些点能到达它. PS:数据太水,暴力能过. #include<bits/stdc++.h> using namespace st ...
- Luogu P4306 [JSOI2010]连通数 传递闭包
正解其实是\(Tarjan\) + \(拓扑拓扑\),但是却可以被\(O(N^3 / 32)\)复杂度的传递闭包水过去.心疼一下写拓扑的小可爱们. 学到一个\(bitset\)优化布尔图的骚操作,直接 ...
- 2018.09.11 bzoj2208: [Jsoi2010]连通数(bitset+floyd)
传送门 听说正解是缩点+dfs? 直接bitset优化floyd传递闭包就行了.(尽管时间复杂度是假的O(n3/32)" role="presentation" styl ...
- BZOJ2208:[JSOI2010]连通数(DFS)
Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...
- BZOJ2208 [Jsoi2010]连通数 【图的遍历】
题目 输入格式 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. 输出格式 输出一行一个整数,表示该图的连通数. 输入样例 3 ...
- [BZOJ2208]:[Jsoi2010]连通数(暴力 or bitset or 塔尖?)
题目传送门 题目描述 度量一个有向图连通情况的一个指标是连通数,指图中可达顶点对的个数. 在上图中,顶点1可以到达1.2.3.4.5. 顶点2可以到达2.3.4.5. 顶点3可以到达3.4.5. 顶点 ...
随机推荐
- 第八次oo作业
作业五 作业五是当前最后一次电梯作业,也是我们第一次接触到多线程编程,输入方式也由之前的一次性输入变为了实时输入,其中涉及到大量的同步和冲突,其中学习多线程的使用也花了大量的时间,但总的来说为以后的作 ...
- Johnson算法
用于求稀疏图上的全局最短路. 考虑将带负权的图变为不带负权的图,再跑\(n\)次Dijkstra. 方法:新建点S,向所有点连边权为\(0\)的边,然后以S为起点跑SPFA.然后将每条边的权值重新赋为 ...
- 辨析element.offsetXxxx和element.style.xxxx
DOM操作时,经常使用element.style属性,没错,element.style是属性,和几个offsetXxxx属性一样,概念是一样的. 但是style有几个属性,这几个属性和offsetXx ...
- CodeIgniter框架中尝试使用swoole
ci框架版本:3.1.7. swoole版本:1.7. php版本:5.6 相关文档: 以cli方式运行ci框架 swoole官方手册 创建一个TestSwoole和Hello控制器 ...
- tomcat redis 集群 session共享
jcoleman/tomcat-redis-session-manager: Redis-backed non-sticky session store for Apache Tomcathttps: ...
- HowTos/Virtualization/VirtualBox - CentOS Wiki
https://wiki.centos.org/HowTos/Virtualization/VirtualBox
- java编程规范(持续更新)
1:非空判断 错误例子: if(user.getUserName().equals("hollis")){ } 这段代码极有可能在实际运行的时候跑出NullPointerExcep ...
- 记自己在mybatis中设置jdbcType的一个坑
项目是用ssm搭建的.主要是为app数据接口.其中有一个需求就app想要查询一段时间内某个用户的测量信息,所以app给我后端传递了3个参数,分别是appuserId(String),startDate ...
- 使用cmd命令删除文件夹下所有文件
rmdir 删除整个目录 好比说我要删除 222 这个目录下的所有目录和档案,这语法就是: rmdir /s/q 222 其中: /s 是代表删除所有子目录跟其中的档案. /q 是不要它在删除档案或目 ...
- 通用模块设计UMD
https://leohxj.gitbooks.io/front-end-database/content/javascript-modules/about-umd.html UMD(universa ...