【BZOJ2208】【JSOI2010】连通数 传递闭包
题目描述
定义一个图的连通度为图中可达顶点对的数目。给你一个\(n\)个点的有向图,问你这个图的连通度。
\(n\leq 2000,m\leq n^2\)
题解
一个很简单的做法就是传递闭包:像floyd算法一样处理两个点之间是否可达。
\]
但是这是\(O(n^3)\)的。
观察到用到的运算都是位运算,那就用bitset加速一下就行了。
时间复杂度:\(O(\frac{n^3}{64})\)(还是\(O(n^3)\))
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
bitset<2001> f[2010];
char s[2010];
int main()
{
int n;
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%s",s+1);
for(j=1;j<=n;j++)
if(s[j]-'0')
f[i].set(j);
f[i].set(i);
}
for(j=1;j<=n;j++)
for(i=1;i<=n;i++)
if(i!=j&&f[i][j])
f[i]|=f[j];
int s=0;
for(i=1;i<=n;i++)
s+=f[i].count();
printf("%d\n",s);
return 0;
}
【BZOJ2208】【JSOI2010】连通数 传递闭包的更多相关文章
- [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd
连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...
- bzoj2208 [Jsoi2010]连通数(scc+bitset)
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1879 Solved: 778[Submit][Status ...
- BZOJ2208 [Jsoi2010]连通数[缩点/Floyd传递闭包+bitset优化]
显然并不能直接dfs,因为$m$会非常大,复杂度就是$O(mn)$: 这题有三种做法,都用到了bitset的优化.第二种算是一个意外的收获,之前没想到竟然还有这种神仙操作.. 方法一:缩点+DAG上b ...
- [BZOJ2208][Jsoi2010]连通数 暴力枚举
Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...
- BZOJ2208: [Jsoi2010]连通数
tarjan缩点后拓扑排序,每一个点用一个bitset记录哪些点能到达它. PS:数据太水,暴力能过. #include<bits/stdc++.h> using namespace st ...
- Luogu P4306 [JSOI2010]连通数 传递闭包
正解其实是\(Tarjan\) + \(拓扑拓扑\),但是却可以被\(O(N^3 / 32)\)复杂度的传递闭包水过去.心疼一下写拓扑的小可爱们. 学到一个\(bitset\)优化布尔图的骚操作,直接 ...
- 2018.09.11 bzoj2208: [Jsoi2010]连通数(bitset+floyd)
传送门 听说正解是缩点+dfs? 直接bitset优化floyd传递闭包就行了.(尽管时间复杂度是假的O(n3/32)" role="presentation" styl ...
- BZOJ2208:[JSOI2010]连通数(DFS)
Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...
- BZOJ2208 [Jsoi2010]连通数 【图的遍历】
题目 输入格式 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. 输出格式 输出一行一个整数,表示该图的连通数. 输入样例 3 ...
- [BZOJ2208]:[Jsoi2010]连通数(暴力 or bitset or 塔尖?)
题目传送门 题目描述 度量一个有向图连通情况的一个指标是连通数,指图中可达顶点对的个数. 在上图中,顶点1可以到达1.2.3.4.5. 顶点2可以到达2.3.4.5. 顶点3可以到达3.4.5. 顶点 ...
随机推荐
- Python—元类
什么是元类? 元类是类的类,是类的模板 元类是用来控制如何创建类的,正如类是创建对象的模板一样,而元类的主要目的是为了控制类的创建行为 元类的实例化的结果为我们用class定义的类,正如类的实例为对象 ...
- Servlet 转发请求与重定向,以及路径问题
转发请求 当一个servlet接收到请求后,如果需要将请求转发给另外一个servlet或者jsp文件,可使用下面这种方法: package cn.ganlixin.servlet; import ja ...
- MySQL左连接时 返回的记录条数 比 左边表 数量多
在学MySQL的连接时,为了便于记忆,就将左连接 记做 最后结果的总记录数 和 进行左连接的左表的记录数相同,简单的说就是下面这个公式 count(table A left join table B) ...
- 中国科学技术大学统一身份认证系统CAS
CAS | Apereohttps://www.apereo.org/projects/cas 中国科学技术大学统一身份认证系统https://passport.ustc.edu.cn/login?s ...
- web安全测试排查
漏洞排查思路: 1.上传漏洞 如果看到:选择你要上传的文件 [重新上传]或者出现“请登陆后使用”,80%就有漏洞了! 有时上传不一定会成功,这是因为Cookies不一样.我们就要用WSockExper ...
- jquery on绑定事件
描述:给一个或多个元素(当前的或未来的)的一个或多个事件绑定一个事件处理函数.(1.7版本开始支持,是 bind().live() 和 delegate() 方法的新的替代品) 语法:.on( eve ...
- mybatis出现NoSuchMethodException异常
今天在idea中调试项目(ssm搭建的项目)的时候,mybatis突然出现了NoSuchMethodException异常,具体的异常时: java.lang.NoSuchMethodExceptio ...
- Jenkins整合SonarQube代码检测工具
借鉴博客:https://blog.csdn.net/kefengwang/article/details/54377055 上面这博客写得挺详细的,挺不错.它这个博客没有提供下载的教程,这个博客提供 ...
- Eclipse导入工程后出现中文乱码
Eclipse之所以会出现乱码问题是因为eclipse编辑器选择的编码规则是可变的.一般默认都是UTF-8或者GBK,当从外部导入的一个工程时,如果该工程的编码方式与eclipse中设置的编码方式不同 ...
- java学习之—递归实现二分查找法
/** * 递归实现二分查找法 * Create by Administrator * 2018/6/21 0021 * 上午 11:25 **/ class OrdArray{ private lo ...