题目描述

有n朵花,每朵花有三个属性:花形(s)、颜色(c)、气味(m),用三个整数表示。现在要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量。定义一朵花A比另一朵花B要美丽,当且仅Sa>=Sb,Ca>=Cb,Ma>=Mb。显然,两朵花可能有同样的属性。需要统计出评出每个等级的花的数量。

分析

人生的第一道cdq分治,一开始还是非常头痛的,然后看了大佬们的博客之后差不多知道cdq超短裙分治是什么了。
就针对于这道题目,第一位很显然是排序,然后第二维是cdq分治求逆序对,第三维是用树状数组求逆序对。
简单讲一下cdq分支的思想:分治区间\([l,r]\),递归解决子问题\([l,mid]\)和\([mid+1,r]\),那么我们统计左区间对右区间答案的贡献,因为每一次都是分治,所以不会有答案重叠。因为右区间的第二维是有序的,于是可以扫一遍右区间,每次找到左区间最大的第二维小于当前枚举到的右区间元素的第二维的元素,用树状数组维护第三维,更新答案。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
}
#define N 100005
struct data {
    int x, y, z, res, cnt;
    data() {
        x = y = z = res = cnt = 0;
    }
}a[N], v[N];
int n, k;
int ans[N];
struct BIT{
    #define lowbit(x) (x&-x)
    int n, tr[N << 1];
    void add(int x, int val) {
        for (; x <= n; x += lowbit(x)) tr[x] += val;
    }
    int query(int x) {
        int res = 0;
        for (; x; x -= lowbit(x)) res += tr[x];
        return res;
    }
}tr;
bool cmp1(const data &a, const data &b) {
    if (a.x == b.x)
        if (a.y == b.y) return a.z < b.z;
        else return a.y < b.y;
    else return a.x < b.x;
}
bool cmp2(const data &a, const data &b) {
    if (a.y == b.y) return a.z < b.z;
    else return a.y < b.y;
}
void cdq(int l, int r) {
    if (l == r) return;
    int mid = (l + r) >> 1;
    cdq(l, mid);
    cdq(mid + 1, r);
    sort(v + l, v + mid + 1, cmp2);
    sort(v + mid + 1, v + r + 1, cmp2);
    int l1 = l, l2 = mid + 1;
    while (l2 <= r) {
        while (l1 <= mid && v[l1].y <= v[l2].y)
            tr.add(v[l1].z, v[l1].cnt), l1 ++;
        v[l2].res += tr.query(v[l2].z);
        l2 ++;
    }
    for (int i = l; i < l1; i ++) tr.add(v[i].z, -v[i].cnt);
}
int main() {
    read(n); read(k);
    tr.n = k;
    for (int i = 1; i <= n; i ++) {
        read(a[i].x); read(a[i].y); read(a[i].z);
    }
    sort(a + 1, a + 1 + n, cmp1);
    int tot = 0;
    for (int i = 1, j = 1; i <= n; i = j) {
        v[++ tot] = a[i];
        while (a[i].x == a[j].x && a[i].y == a[j].y && a[i].z == a[j].z && j <= n)
            j ++, v[tot].cnt ++;
    }
    cdq(1, tot);
    for (int i = 1; i <= tot; i ++)
        ans[v[i].res + v[i].cnt] += v[i].cnt;
    for (int i = 1; i <= n; i ++) printf("%d\n", ans[i]);
    return 0;
}

[luogu3810][bzoj3262]陌下花开【cdq分治】的更多相关文章

  1. BZOJ3262: 陌上花开(三维偏序,CDQ分治)

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),用三个整数表示. 现在要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量. 定义一朵花A比另一朵花B要美 ...

  2. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  3. 【BZOJ3262】陌上花开 cdq分治

    [BZOJ3262]陌上花开 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义 ...

  4. BZOJ3262陌上花开(三维偏序问题(CDQ分治+树状数组))+CDQ分治基本思想

    emmmm我能怎么说呢 CDQ分治显然我没法写一篇完整的优秀的博客,因为我自己还不是很明白... 因为这玩意的思想实在是太短了: fateice如是说道: 如果说对于一道题目的离线操作,假设有n个操作 ...

  5. bzoj3262陌上花开 cdq分治入门题

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  6. HDU - 6183 暴力,线段树动态开点,cdq分治

    B - Color itHDU - 6183 题目大意:有三种操作,0是清空所有点,1是给点(x,y)涂上颜色c,2是查询满足1<=a<=x,y1<=b<=y2的(a,b)点一 ...

  7. 【学术篇】bzoj3262 陌上花开. cdq分治入门

    花儿们已经很累了-- 无论是花形.颜色.还是气味, 都不是为了给人们摆出来欣赏的, 更不是为了当做出题的素材的, 她们并不想自己这些属性被没有生命的数字量化, 并不想和其它的花攀比, 并无意分出个三六 ...

  8. 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)

    3262: 陌上花开 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1439  Solved: 648[Submit][Status][Discuss ...

  9. 【BZOJ3262】陌上花开 (CDQ分治+树状数组+排序)

    Time Limit: 3000 ms   Memory Limit: 256 MB Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),用三个整数表示. 现要对每 ...

随机推荐

  1. 使用队列queue实现一个简单的生产者消费者模型

    一.生产者消费者模型 我们去超市商店等地购买商品时,我们大部分人都会说自己是消费者,而超市的各大供货商.工厂等,自然而然地也就成了我们的生产者.如此一来,生产者有了,消费者也有了,那么将二者联系起来的 ...

  2. JavaWeb连接SQLServer数据库并完成一个登录界面及其功能设计。

    一.JDBC连接SQLserver数据库的步骤: 1.下载SQLserver的JDBC驱动文件——Microsoft JDBC Driver 4.0 for SQL Server 2.例如下载得到的文 ...

  3. mysql cpu 100% 满 优化方案

    解决MySQL CPU占用100%的经验总结 - karl_han的专栏 - CSDN博客 https://blog.csdn.net/karl_han/article/details/5630782 ...

  4. Linux sudoers

    xxx is not in the sudoers file.This incident will be reported.的解决方法 - xiaochaoyxc - 博客园http://www.cn ...

  5. JEECG SSO kisso

    kisso: java 基于 Cookie 的 SSO 中间件 kisso https://gitee.com/baomidou/kisso kisso首页.文档和下载 - 基于 Cookie 的 S ...

  6. Nginx三部曲(2)性能

    我们会告诉你 Nginx 如何工作及其背后的理念,还有如何优化以加快应用的性能,如何安装启动和保持运行. 这个教程有三个部分: 基本概念 —— 这部分需要去了解 Nginx 的一些指令和使用场景,继承 ...

  7. MySQL根据某个字段查询重复的数据

    select count(*) '个数',mobile '手机号',`name` '用户名' from users group by mobile having(count(*) > 1); = ...

  8. JS—ajax及async和defer的区别

    ###1.ajax  “Asynchronous Javascript And XML”(异步 JavaScript 和 XML) 使用: 如不考虑旧版本浏览器兼容性, // 第一步创建xhr对象 v ...

  9. npm5踩过的坑!

    1. 版本问题导致环境问题 我们第一次npm install时是根据package.json来安装相关依赖的,但是它里面的版本不固定,因此默认会根据最高的版本来安装相关依赖,但是在npm5是根据pac ...

  10. Java 异常处理的误区和经验总结

    Java 异常处理的误区和经验总结   1 本文着重介绍了 Java 异常选择和使用中的一些误区,希望各位读者能够熟练掌握异常处理的一些注意点和原则,注意总结和归纳.只有处理好了异常,才能提升开发人员 ...