传送门

这题真的是送温暖啊qwq,而且最重要的是yyb巨佬在Day2前几天正好学了crt,还写了博客 然而我都没仔细看,结果我就同步赛打铁了QAQ

我们可以先根据题意,使用set维护,求出每次的攻击力

然后对于一条龙,要使得砍到生命值能加到0,那么 攻击力\(a_i\) * 次数\(x\) 要和 血量\(b_i\) 在膜 回复量\(p_i\) 意义下同余,也就是\(a_ix\equiv b_i\mod p_i\)

然后就是n个这样的方程,求最小的x

首先对于每个方程,考虑转化成\(x\equiv a\mod b\)的形式,原方程等价于$$a_ix+p_iy=b_i$$

首先用\(exgcd\)求出\(a_ix+p_iy=gcd(a_i,p_i)\)的一组解\((x,y)\),然后如果\(b_i \ne 0\mod gcd(a_i,p_i)\),那么无解,否则等式两边可以除掉gcd然后乘上\(b_i\),即$$a_i\frac{b_ix}{gcd(a_i,p_i)}+p_i\frac{b_iy}{gcd(a_i,p_i)}=b_i$$

记\({a'}_i=\frac{b_ix}{gcd(a_i,p_i)},{p'}_i=\frac{p_i}{gcd(a_i,p_i)}\)我们得到了n个形如\(x\equiv {a'}_i\mod {p'}_i\)的方程,右转洛谷题解蒯一份\(excrt\)即可

#include<bits/stdc++.h>
#define LL long long
#define ldb long double
#define il inline
#define re register using namespace std;
const int N=1e5+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
il LL smul(LL a,LL b,LL mod){return ((a*b-(LL)((ldb)a/mod*b)*mod)%mod+mod)%mod;}
il void exgcd(LL a,LL b,LL &d,LL &x,LL &y)
{
if(!b) {d=a,x=1,y=0;return;}
exgcd(b,a%b,d,y,x),y-=a/b*x;
}
int n,m;
LL a[N],aa[N],b[N],p[N];
multiset<LL> s1,s2;
multiset<LL>::iterator it; int main()
{
int T=rd();
while(T--)
{
s1.clear(),s2.clear();
bool o=1,ff=0;
n=rd(),m=rd();
for(int i=1;i<=n;++i) b[i]=rd();
for(int i=1;i<=n;++i) p[i]=rd(),ff|=p[i]!=1;
for(int i=1;i<=n;++i) aa[i]=rd();
while(m--)
{
LL x=rd();
s1.insert(x),s2.insert(-x);
}
for(int i=1;i<=n;++i)
{
it=s2.lower_bound(-b[i]);
if(it!=s2.end()) a[i]=-(*it);
else a[i]=*(s1.begin());
s1.erase(s1.find(a[i])),s2.erase(s2.find(-a[i]));
s1.insert(aa[i]),s2.insert(-aa[i]);
}
if(!ff)
{
LL ans=0;
for(int i=1;i<=n;++i) ans=max(ans,(b[i]+a[i]-1)/a[i]);
printf("%lld\n",ans);
continue;
}
for(int i=1;i<=n&&o;++i)
{
LL x,y,d;
exgcd(a[i],p[i],d,x,y),p[i]/=d;
if(b[i]%d) o=0;
a[i]=smul((x%p[i]+p[i])%p[i],b[i]/d,p[i]);
}
LL a1=a[1],p1=p[1];
for(int i=2;i<=n&&o;++i)
{
LL x,y,d,c=((a[i]-a1)%p[i]+p[i])%p[i];
exgcd(p1,p[i],d,x,y),p[i]/=d;
if(c%d) o=0;
x=(x%p[i]+p[i])%p[i];
x=smul(x,c/d,p[i]);
a1+=smul(p1,x,p1*p[i]),p1*=p[i],a1%=p1;
}
printf("%lld\n",o?a1:-1ll);
}
return 0;
}

md做这道题的时候一万个地方没开longlong,而且exgcd不知道为什么被我删掉了一个\(*x\) qwq

luogu P4774 [NOI2018]屠龙勇士的更多相关文章

  1. P4774 [NOI2018]屠龙勇士

    P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...

  2. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  3. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  4. 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]

    传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...

  5. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  6. BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set

    题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...

  7. BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt

    BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...

  8. uoj396 [NOI2018]屠龙勇士

    [NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...

  9. Luogu P4774 / LOJ2721 【[NOI2018]屠龙勇士】

    真是个简单坑题...++ 前置: exgcd,exCRT,STL-multiset 读完题不难发现,攻击每条龙用的剑都是可以确定的,可以用multiset求.攻击最少显然应该对于每一条龙都操作一次,即 ...

随机推荐

  1. 真机控件获取 app-inspector

    1.安装app-inspector:npm  install  app-inspector  -g 若是要卸载原有的:npm   uninstall   app-inspector   -g   np ...

  2. python pip NameError:name 'pip' is not defined”

    https://www.jianshu.com/p/f57f98ebcb21 问题: 如果直接在命令行里面输入pip或者pip3,提示:(如图1) “NameError:name 'pip' is n ...

  3. html 网页背景图片根据屏幕大小CSS自动缩放

    https://blog.csdn.net/coslay/article/details/47109281 腾讯微博和QQ空间的登录背景图片是根据访客的屏幕大小自动缩放的,但是好像是用JQuery代码 ...

  4. feign无法注入service

    https://segmentfault.com/q/1010000008531927

  5. 【清北学堂2018-刷题冲刺】Contest 7

    Task 1:小奇采药 [问题描述]  小奇是只天资聪颖的喵,他的梦想是成为世界上最伟⼤的医师.  为此,他想拜喵星球最有威望的医师为师.  医师为了判断他的资质,给他出了⼀个难题.  医师把他带到⼀ ...

  6. linux driver ------ GPIO的驱动编写和调用

    判断哪些文件被编译进内核: 1.通过 make menuconfig 查看 2.比如查看gpio类型的文件,输入 ls drivers/gpio/*.o,有生成.o文件表示被编译进内核 在编写驱动程序 ...

  7. asp一句话

    <%eval""&("e"&"v"&"a"&"l"&& ...

  8. window下域名解析系统DNS诊断命令nslookup详解

    Ping指令我们很熟悉了,它是一个检查网络状况的命令,在输入的参数是域名的情况下会通过DNS进行查询,但只能查询A记录和CNAME(别名)记录,还会返回域名是否存在,其他的信息都是没有的.如果你需要对 ...

  9. Mysql查询数据库 整理

    一.       查询数据: 查询所有列:SELECT * FROM student; 查询指定列:SELECT id,NAME,gender FROM student; 格式:select字段名, ...

  10. 给笔记本更换SSD硬盘

    给笔记本更换SSD硬盘... ---------- 给笔记本更换SSD硬盘 带活动字样的一个新的系统盘,一个之前的主分区的系统盘 ----------------------------