python ddt
#!/usr/bin/env/python
# -*- coding: utf-8 -*-
# @Time : 2018/12/15 15:27
# @Author : ChenAdong
# @Email : aiswell@foxmail.com import unittest
import ddt lst = [1, 2, 3]
dic = {"userName": "chen"}
tur = (1, 2, 3)
s = {1, 2, 3} @ddt.ddt
class Test(unittest.TestCase): @ddt.data(*lst)
def test_list(self, data):
print("test_list")
print(data)
print("==================") @ddt.data(*dic)
def test_dictionary(self, data):
print("test_dic")
print(data)
print("==================") @ddt.file_data("ddt_test001.json")
def test_file(self, key):
print(key) @ddt.file_data("ddt_test.json")
@ddt.unpack
def test_file(self, start, end, value):
print(start, end, value) if __name__ == "__main__":
unittest.main() """
# 付上ddt-help
E:\myworkspace\python_workspace\tools\venv\Scripts\python.exe E:/myworkspace/python_workspace/projects/tmp/test002.py
Help on module ddt:
NAME
ddt
DESCRIPTION
# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/txels/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/txels/ddt/blob/master/LICENSE.md
FUNCTIONS
add_test(cls, test_name, test_docstring, func, *args, **kwargs)
Add a test case to this class.
The test will be based on an existing function but will give it a new
name.
data(*values)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
ddt(cls)
Class decorator for subclasses of ``unittest.TestCase``.
Apply this decorator to the test case class, and then
decorate test methods with ``@data``.
For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``.
The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1.
For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead.
For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key.
feed_data(func, new_name, test_data_docstring, *args, **kwargs)
This internal method decorator feeds the test data item to the test.
file_data(value)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict.
In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name.
In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data.
idata(iterable)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
is_trivial(value)
mk_test_name(name, value, index=0)
Generate a new name for a test case.
It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``.
We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is.
A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
process_file_data(cls, name, func, file_attr)
Process the parameter in the `file_data` decorator.
unpack(func)
Method decorator to add unpack feature.
DATA
DATA_ATTR = '%values'
FILE_ATTR = '%file_path'
UNPACK_ATTR = '%unpack'
index_len = 5
trivial_types = (<class 'NoneType'>, <class 'bool'>, <class 'int'>, <c...
VERSION
1.2.1
FILE
e:\myworkspace\python_workspace\tools\venv\lib\site-packages\ddt.py
None
Process finished with exit code 0
"""
python ddt的更多相关文章
- python DDT读取excel测试数据
转自:http://www.cnblogs.com/nuonuozhou/p/8645129.html ddt 结合单元测试一起用 ddt(data.driven.test):数据驱动测试 由外部 ...
- python ddt数据驱动(简化重复代码)
在接口自动化测试中,往往一个接口的用例需要考虑 正确的.错误的.异常的.边界值等诸多情况,然后你需要写很多个同样代码,参数不同的用例.如果测试接口很多,不但需要写大量的代码,测试数据和代码柔合在一起, ...
- python ddt 实现数据驱动一
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python+ddt+unittest+excel+request实现接口自动化
接口自动化测试流程:需求分析-用例设计--脚本开发--测试执行--结果分析1.获取接口文档,根据文档获取请求方式,传输协议,请求参数,响应参数,判断测试是否通过设计用例2.脚本开发:使用request ...
- python ddt 实现数据驱动
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python ddt实现数据驱动
首先安装ddt模块,命令:pip install ddt 通常情况下,data中的数据按照一个参数传递给测试用例,如果data中含有多个数据,以元组,列表,字典等数据,需要自行在脚本中对数据进行分解或 ...
- python ddt 传多个参数值示例
import unittest from ddt import ddt,data,file_data,unpack @ddt class TestDDT(unittest.TestCase): lis ...
- python ddt模块
ddt模块包含了一个类的装饰器ddt和两个方法的装饰器: data:包含多个你想要传给测试用例的参数: file_data:会从json或yaml中加载数据: 通常data中包含的每一个值都会作为一个 ...
- Python DDT(data driven tests)模块心得
关于ddt模块的一些心得,主要是看官网的例子,加上一点自己的理解,官网地址:http://ddt.readthedocs.io/en/latest/example.html ddt(data driv ...
随机推荐
- [Shell]sed命令在MAC和Linux下的不同使用方式
---------------------------------------------------------------------------------------------------- ...
- java泛型【收藏】
什么是泛型? 泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类.可以把类型参数看作是使用参数化类型时指定的类型的一个 ...
- leetcode — sqrtx
/** * Source : https://oj.leetcode.com/problems/sqrtx/ * * * Implement int sqrt(int x). * * Compute ...
- 【转载】ucos临界段
其实很简单: 临界段就是不可中断的程序段,比如从UART中读取当前传递回来的值,如果有UART中断,此时这个值又会改变.同样临界段就是保护这类全局变量,如在读取时间节拍时,不应该被时钟更新时钟 ...
- 分享几个实用的Chrome扩展程序
前言 吐槽一下自己,最近变懒了,博客已经变成月更了.这次分享几个自己工作这几年下来,平常用的比较多的几个谷歌浏览器的扩展程序. AdBlock 最受欢迎的 Chrome 扩展,拥有超过 6000 万用 ...
- 使用minukube部署kubernetes admission webhook实现etcd pod安全删除
本需求来自于一道面试题
- dubbo源码解析五 --- 集群容错架构设计与原理分析
欢迎来我的 Star Followers 后期后继续更新Dubbo别的文章 Dubbo 源码分析系列之一环境搭建 博客园 Dubbo 入门之二 --- 项目结构解析 博客园 Dubbo 源码分析系列之 ...
- Spring Boot入门(2)使用MySQL数据库
介绍 本文将介绍如何在Spring项目中连接.处理MySQL数据库. 该项目使用Spring Data JPA和Hibernate来连接.处理MySQL数据库,当然,这仅仅是其中一种方式,你也 ...
- IdentityServer4 中文文档 -14- (快速入门)使用 ASP.NET Core Identity
IdentityServer4 中文文档 -14- (快速入门)使用 ASP.NET Core Identity 原文:http://docs.identityserver.io/en/release ...
- WPF BackGroundWord 异步加载更新进度条示例
<Window x:Class="AsynchronousLoading.MainWindow" xmlns="http://schemas.microsoft.c ...