python ddt
#!/usr/bin/env/python
# -*- coding: utf-8 -*-
# @Time : 2018/12/15 15:27
# @Author : ChenAdong
# @Email : aiswell@foxmail.com import unittest
import ddt lst = [1, 2, 3]
dic = {"userName": "chen"}
tur = (1, 2, 3)
s = {1, 2, 3} @ddt.ddt
class Test(unittest.TestCase): @ddt.data(*lst)
def test_list(self, data):
print("test_list")
print(data)
print("==================") @ddt.data(*dic)
def test_dictionary(self, data):
print("test_dic")
print(data)
print("==================") @ddt.file_data("ddt_test001.json")
def test_file(self, key):
print(key) @ddt.file_data("ddt_test.json")
@ddt.unpack
def test_file(self, start, end, value):
print(start, end, value) if __name__ == "__main__":
unittest.main() """
# 付上ddt-help
E:\myworkspace\python_workspace\tools\venv\Scripts\python.exe E:/myworkspace/python_workspace/projects/tmp/test002.py
Help on module ddt:
NAME
ddt
DESCRIPTION
# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/txels/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/txels/ddt/blob/master/LICENSE.md
FUNCTIONS
add_test(cls, test_name, test_docstring, func, *args, **kwargs)
Add a test case to this class.
The test will be based on an existing function but will give it a new
name.
data(*values)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
ddt(cls)
Class decorator for subclasses of ``unittest.TestCase``.
Apply this decorator to the test case class, and then
decorate test methods with ``@data``.
For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``.
The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1.
For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead.
For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key.
feed_data(func, new_name, test_data_docstring, *args, **kwargs)
This internal method decorator feeds the test data item to the test.
file_data(value)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict.
In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name.
In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data.
idata(iterable)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
is_trivial(value)
mk_test_name(name, value, index=0)
Generate a new name for a test case.
It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``.
We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is.
A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
process_file_data(cls, name, func, file_attr)
Process the parameter in the `file_data` decorator.
unpack(func)
Method decorator to add unpack feature.
DATA
DATA_ATTR = '%values'
FILE_ATTR = '%file_path'
UNPACK_ATTR = '%unpack'
index_len = 5
trivial_types = (<class 'NoneType'>, <class 'bool'>, <class 'int'>, <c...
VERSION
1.2.1
FILE
e:\myworkspace\python_workspace\tools\venv\lib\site-packages\ddt.py
None
Process finished with exit code 0
"""
python ddt的更多相关文章
- python DDT读取excel测试数据
转自:http://www.cnblogs.com/nuonuozhou/p/8645129.html ddt 结合单元测试一起用 ddt(data.driven.test):数据驱动测试 由外部 ...
- python ddt数据驱动(简化重复代码)
在接口自动化测试中,往往一个接口的用例需要考虑 正确的.错误的.异常的.边界值等诸多情况,然后你需要写很多个同样代码,参数不同的用例.如果测试接口很多,不但需要写大量的代码,测试数据和代码柔合在一起, ...
- python ddt 实现数据驱动一
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python+ddt+unittest+excel+request实现接口自动化
接口自动化测试流程:需求分析-用例设计--脚本开发--测试执行--结果分析1.获取接口文档,根据文档获取请求方式,传输协议,请求参数,响应参数,判断测试是否通过设计用例2.脚本开发:使用request ...
- python ddt 实现数据驱动
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python ddt实现数据驱动
首先安装ddt模块,命令:pip install ddt 通常情况下,data中的数据按照一个参数传递给测试用例,如果data中含有多个数据,以元组,列表,字典等数据,需要自行在脚本中对数据进行分解或 ...
- python ddt 传多个参数值示例
import unittest from ddt import ddt,data,file_data,unpack @ddt class TestDDT(unittest.TestCase): lis ...
- python ddt模块
ddt模块包含了一个类的装饰器ddt和两个方法的装饰器: data:包含多个你想要传给测试用例的参数: file_data:会从json或yaml中加载数据: 通常data中包含的每一个值都会作为一个 ...
- Python DDT(data driven tests)模块心得
关于ddt模块的一些心得,主要是看官网的例子,加上一点自己的理解,官网地址:http://ddt.readthedocs.io/en/latest/example.html ddt(data driv ...
随机推荐
- yum安装Elasticsearch5.x
这里演示YUM和RPM两种方式安装Elasticsearch 下载并安装 public signing key: rpm --import https://artifacts.elastic.co/G ...
- Android--多线程之进程与线程
前言 对于Android程序中,使用多线程的技术是必不可少的,就拿之前最简单的例子来说明,对于Android4.0+的应用而言,访问网络必须另起线程才可以访问.本片博客介绍Android下进程和线程, ...
- 【转载】“宇宙最强” IDE,Visual Studio 2019 正式发布
转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 本文由葡萄城翻译并发布 今天凌晨Visual Studio 2019已经正式发布,现在已经可以下载了.使用V ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- 打造SharePoint之在线开发神器SPOnlineDevelopTool(一)——概述
做SharePoint开发有时候是一件比较痛苦的事情,毕竟庞大的框架总是笨重的~~ 往往如果采取传统的方式开发SharePoint的话,更改一个代码需要有以下操作: 1)更改代码 2)VS编译——&g ...
- Docker网络的基本功能操作示例
一.Docker常用的四种网络模型 1.第一种:使用网络名称空间,但不设置任何网络设备 这种模型中只有lo接口,是一个封闭式的容器,不能与外界进行通信.设置网络模型需要使用 --network 选项来 ...
- 华为路由器 IPSec 与 GRE 结合实验
二者结合的目的 GRE 支持单播.组播.广播,IPSec 仅支持单播.GRE 不支持对于数据完整性以及身份认证的验证功能,并且也不具备数据加密保护.而 IPSec 恰恰拥有强大的安全机制.达到了互补的 ...
- 业务开发(一)—— MySQL
0x01.SQL异常Incorrect string value java.sql.SQLException: Incorrect string value: '\xE6\x88\x91\xE7\x9 ...
- FMDB源码解析
上一篇博客讲述SQLite的使用,本篇将讲述FMDB源码,后面也会讲解SQLite在使用与FMDB的区别.本篇读下来大约20-30分钟,建议大家先收藏一下. FMDB是以OC方式封装SQLite中C语 ...
- AvosCloud的文件存储 Demo
时间戳:201310142227 废话少说,直接上代码: package com.dannalapp.main; import com.avos.avoscloud.GetCallback; impo ...