现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象。

首先了解一下dropout的实现原理:

这些理论的解释在百度上有很多。。。。

这里重点记录一下怎么实现这一技术

参考别人的博客,主要http://www.cnblogs.com/dupuleng/articles/4340293.html

讲解一下用Matlab中的深度学习工具箱怎么实现dropout

首先要载入工具包。DeepLearn Toolbox是一个非常有用的matlab deep learning工具包,下载地址:https://github.com/rasmusbergpalm/DeepLearnToolbox

要使用它首先要将该工具包添加到matlab的搜索路径中,

1、将包复制到matlab 的toolbox中,作者的路径是D:\program Files\matlab\toolbox\

2、在matlab的命令行中输入:  

cd D:\program Files\matlab\toolbox\deepLearnToolbox\
addpath(gepath('D:\program Files\matlab\toolbox\deepLearnToolbox-master\')
savepath %保存,这样就不需要每次都添加一次

3、验证添加是否成功,在命令行中输入

which saesetup

果成功就会出现,saesetup.m的路径D:\program Files\matlab\toolbox\deepLearnToolbox-master\SAE\saesetup.m

4、使用deepLearnToolbox 工具包,做一个简单的demo,将autoencoder模型使用dropout前后的结果进行比较。

load mnist_uint8;
train_x = double(train_x(:,:)) / ;
test_x = double(test_x(:,:)) / ;
train_y = double(train_y(:,:));
test_y = double(test_y(:,:)); %% //实验一without dropout
rand('state',)
sae = saesetup([ ]);
sae.ae{}.activation_function = 'sigm';
sae.ae{}.learningRate = ;
opts.numepochs = ;
opts.batchsize = ;
sae = saetrain(sae , train_x , opts );
visualize(sae.ae{}.W{}(:,:end)'); nn = nnsetup([ ]);% //初步构造了一个输入-隐含-输出层网络,其中包括了
% //权值的初始化,学习率,momentum,激发函数类型,
% //惩罚系数,dropout等 nn.W{} = sae.ae{}.W{};
opts.numepochs = ; % //Number of full sweeps through data
opts.batchsize = ; % //Take a mean gradient step over this many samples
[nn, ~] = nntrain(nn, train_x, train_y, opts);
[er, ~] = nntest(nn, test_x, test_y);
str = sprintf('testing error rate is: %f',er);
fprintf(str); %% //实验二:with dropout
rand('state',)
sae = saesetup([ ]);
sae.ae{}.activation_function = 'sigm';
sae.ae{}.learningRate = ; opts.numepochs = ;
opts.bachsize = ;
sae = saetrain(sae , train_x , opts );
figure;
visualize(sae.ae{}.W{}(:,:end)'); nn = nnsetup([ ]);% //初步构造了一个输入-隐含-输出层网络,其中包括了
% //权值的初始化,学习率,momentum,激发函数类型,
% //惩罚系数,dropout等
nn.dropoutFraction = 0.5;
nn.W{} = sae.ae{}.W{};
opts.numepochs = ; % //Number of full sweeps through data
opts.batchsize = ; % //Take a mean gradient step over this many samples
[nn, L] = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
str = sprintf('testing error rate is: %f',er);
fprintf(str);

深度学习中dropout策略的理解的更多相关文章

  1. 深度学习中Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...

  2. Hebye 深度学习中Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...

  3. 2.深度学习中的batch_size的理解

    Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开. 首先,为什么需要有 Batch_Size 这个参数? Batch 的选择,首先决定的是下降的方向.如果数据集比较小 ...

  4. 从极大似然估计的角度理解深度学习中loss函数

    从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...

  5. 深度学习中 --- 解决过拟合问题(dropout, batchnormalization)

    过拟合,在Tom M.Mitchell的<Machine Learning>中是如何定义的:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比 ...

  6. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  7. 深度学习中正则化技术概述(附Python代码)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 磐石 介绍 数据科学研究者们最常遇见的问题之一就是怎样避免过拟合. ...

  8. 深度学习中优化【Normalization】

    深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重 ...

  9. zz详解深度学习中的Normalization,BN/LN/WN

    详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Ba ...

随机推荐

  1. ORA-19566: exceeded limit of 0 corrupt blocks for file E:\xxxx\<datafilename>.ORA.

    How to Format Corrupted Block Not Part of Any Segment (Doc ID 336133.1) To BottomTo Bottom In this D ...

  2. Python 使用 distutils 工具安装的扩展包的卸载

    Python 编写完扩展包并 build 好后,可以采用 $ sudo ./setup.py install 安装.采用这种方式安装的扩展包,可以使用 pip list 查看到,但不能直接使用 pip ...

  3. 自定义的库加载不进来,因为库中import的PIL和pillow文件没有pip install

    1.自定义的库,加载进来,提示red不能识别这个class或moudle 2.应该展开细节多看下,细节中提示,没有PIL和pillow 3.这个时候在cmd中使用pip安装PIL和pillow pip ...

  4. 用return关键字实现求和操作

    package com.Summer_0419.cn; /** * @author Summer * 用return关键字的知识,实现求和操作 */ public class Test_Method0 ...

  5. web 项目:解决插入 MySQL 数据库时中文乱码问题

    背景:在做 javaweb 项目的时,前台传递的中文最后插入数据库的时候总是出现乱码现象. 解决方案 ​ A.不管是使用 Idea.eclipse,确定自己的项目所使用的字符集是 UTF-8. ​ B ...

  6. Apache Commons Codec的Base64加解密库

    下载地址:http://commons.apache.org/proper/commons-codec/download_codec.cgi import org.apache.commons.cod ...

  7. Signalr实现消息推送

    一.前言 大多数系统里面好像都有获取消息的功能,但这些消息来源都不是实时的,比如你开两个浏览器,用两个不同的账号登录,用一个账号给另外一个账号发送消息,然而并不会实时收到消息,必须要自己手动F5刷新一 ...

  8. WebApi集成Swagger

    1.新建一个WebApi空项目 2.新建一个Person实体类: public class Person { public int ID { get; set; } public string Use ...

  9. Linux stress 命令

    stress 命令主要用来模拟系统负载较高时的场景,本文介绍其基本用法.文中 demo 的演示环境为 ubuntu 18.04. 基本语法 语法格式:stress <options> 常用 ...

  10. How to Install MemSQL

    MemSQL runs natively on 64-bit Linux operating systems. Your system hardware must have at least 4 CP ...