传送门


Div 2的比赛,前四题还有那么多人过,应该是SB题,就不讲了。

这场比赛一堆计数题,很舒服。(虽然我没打)

E. The Top Scorer

其实这题也不难,不知道为什么这么少人过。

考虑枚举那人的分数和有多少人和他同分,推一下就会发现我们只需要知道\(calc(sum,n,top)\)表示\(sum\)分,分给\(n\)个人,分数小于\(top\),的方案数。

好像不是很好直接搞,考虑容斥,枚举一下至少有几个人不满足条件即可。

#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define mod (ll(998244353))
#define sz 10101
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
template<typename T>inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
template<typename T>inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; ll fac[sz],_fac[sz];
void init(){fac[0]=_fac[0]=1;rep(i,1,sz-1) _fac[i]=inv(fac[i]=fac[i-1]*i%mod);}
ll C(int n,int m){return n>=m&&m>=0?fac[n]*_fac[m]%mod*_fac[n-m]%mod:0;} int n,r,s; ll calc(int sum,int n,int top) // sum points for n people , < top
{
if (!n) return sum==0;
ll ret=0;
rep(i,0,n)
{
if (i*top>sum) return ret;
int cur=sum-i*top;
ret=(ret+1ll*((i&1)?-1:1)*C(cur+n-1,n-1)*C(n,i)%mod+mod)%mod;
}
return ret;
} int main()
{
file();
init();
read(n,s,r);
ll tot=C(s-r+n-1,n-1);
ll ans=0;
rep(i,r,s)
{
rep(j,0,n-1)
{
int rest=s-i-i*j;if (rest<0) break;
ans=(ans+calc(rest,n-j-1,i)*C(n-1,j)%mod*inv(j+1)%mod)%mod;
}
}
cout<<ans*inv(tot)%mod;
return 0;
}

F. Inversion Expectation

很容易想到把各个部分的贡献拆开来算。

分成三个部分:已知对已知、未知对未知、未知对已知。

前两个都很好搞,第三个考虑期望的线性性(虽然我不知道那是啥),随便搞搞就好了。

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define mod 998244353ll
#define sz 200220
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n,m;
int a[sz];
bool vis[sz]; ll tr[sz];
void add(int x,int y){while (x<=n) (tr[x]+=y)%=mod,x+=(x&(-x));}
int query(int x){ll ret=0;while (x) (ret+=tr[x])%=mod,x-=(x&(-x));return ret;}
ll fac[sz]; int main()
{
file();
cin>>n;
rep(i,1,n)
{
cin>>a[i];
if (a[i]==-1) ++m;
}
ll ans=0;
rep(i,1,n) if (a[i]!=-1) (ans+=query(n)-query(a[i]))%=mod,add(a[i],1);
fac[0]=1;rep(i,1,n) fac[i]=fac[i-1]*i%mod;
(ans*=fac[m])%=mod;
(ans+=fac[m]*inv(4)%mod*(1ll*m*(m-1)%mod)%mod)%=mod;
int cnt=0;
rep(i,1,n)
if (a[i]!=-1) (ans+=fac[m-1]*(1ll*cnt*(m+query(a[i])-a[i])%mod+1ll*(m-cnt)*(a[i]-query(a[i]))%mod)%mod)%=mod;
else ++cnt;
cout<<ans*inv(fac[cnt])%mod;
return 0;
}

G. Lucky Tickets

很容易想到枚举两边有多少分。

考虑一个DP:\(dp_{i,j}\)表示前\(i\)位的和为\(j\)的方案数,转移方程显然。

感受一下,这东西就是一个多项式快速幂,就做完了。

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 8010100
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int limit,r[sz];
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
rep(i,0,limit-1) a[i]%=mod;
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int j=0,len=mid<<1;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=a[j+k+mid]*w;
a[j+k]=(x+y)%mod;a[j+k+mid]=(1ll*mod*mod-y+x)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
} int n,K;
ll a[sz]; int main()
{
file();
read(n,K);
int x;
rep(i,1,K) read(x),a[x]=1;
NTT_init(n*10);
NTT(a,1);
rep(i,0,limit) a[i]=ksm(a[i],n/2);
NTT(a,-1);
ll ans=0;
rep(i,0,n*10) (ans+=a[i]*a[i]%mod)%=mod;
cout<<ans;
return 0;
}

Codeforces Educational Codeforces Round 57 题解的更多相关文章

  1. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  2. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  3. Educational Codeforces Round 57题解

    A.Find Divisible 沙比题 显然l和2*l可以直接满足条件. 代码 #include<iostream> #include<cctype> #include< ...

  4. Codeforces Educational Codeforces Round 54 题解

    题目链接:https://codeforc.es/contest/1076 A. Minimizing the String 题意:给出一个字符串,最多删掉一个字母,输出操作后字典序最小的字符串. 题 ...

  5. Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学

    E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...

  6. Codeforces Educational Codeforces Round 5 D. Longest k-Good Segment 尺取法

    D. Longest k-Good Segment 题目连接: http://www.codeforces.com/contest/616/problem/D Description The arra ...

  7. Codeforces Educational Codeforces Round 5 C. The Labyrinth 带权并查集

    C. The Labyrinth 题目连接: http://www.codeforces.com/contest/616/problem/C Description You are given a r ...

  8. Codeforces Educational Codeforces Round 5 B. Dinner with Emma 暴力

    B. Dinner with Emma 题目连接: http://www.codeforces.com/contest/616/problem/A Description Jack decides t ...

  9. Codeforces Educational Codeforces Round 5 A. Comparing Two Long Integers 高精度比大小,模拟

    A. Comparing Two Long Integers 题目连接: http://www.codeforces.com/contest/616/problem/A Description You ...

随机推荐

  1. error.c

    #include <stdio.h> #include <errno.h> #include <stdlib.h> #include <string.h> ...

  2. SSH免费登录

    SSH免费登录很简单,如果有用过git的就更简单了 只需要一下两步操作就OK: 1.生成公钥和私钥,在linx上生成公钥和私钥,执行:ssh-keygen 2.执行ssh-copy-id +ip 例如 ...

  3. MYSQL数据库安装记

    这回安装数据库装,做下记录. 1.下载mysql源安装包 shell> wget http://dev.mysql.com/get/mysql57-community-release-el7-8 ...

  4. springboot项目怎么部署到外部tomcat

    spring-boot项目中,默认提供内嵌的tomcat,所以打包直接生成jar包,用Java -jar命令就可以启动. 但是也有一定的需求,会使用外部tomcat来部署项目.下面来看: 1.新建项目 ...

  5. echarts 导出图片,并将图片导出pdf格式

    1.官方下载echarts 包. 2.实例案例: 1)页面: <h2>Index</h2> <div id="main" style="he ...

  6. Coursera, Machine Learning, Neural Networks: Representation - week4/5

    Neural Network Motivations 想要拟合一条曲线,在feature 很多的情况下,feature的组合也很多,在现实中不适用,比如在computer vision问题中featu ...

  7. scrapy(网络爬虫)———CrawlSpider(规则爬虫)

    CrawlSpider(规则爬虫) 一 .简介:它是Spider的派生类,Spider类的设计原则是只爬取start_url列表中的网页,而CrawlSpider类定义了一些规则(rule)来提供跟进 ...

  8. JAVA进阶3

    间歇性混吃等死,持续性踌躇满志系列-------------第3天 1.局部内部类 局部内部类是指在类的方法中定义的内部类,它的作用范围也是在这个方法体内. class SellOutClass{ p ...

  9. HTML - HTML基础篇

    一.什么是html ? 超文本标记语言.HTML 是标记语言 历史版本: Html 4.01 1999年12月24日,w3c推荐标准 (老网站) 如今 是 html 5 版本. 1.Html 标签拥有 ...

  10. FTP服务器的安装与配置

    查看是否安装ftp: rpm -qa |grep vsftpd 1.安装vsftp 1.1.安装vsftp,测试安装的vsftpd的版本是:vsftpd.x86_64 0:3.0.2-11.el7_2 ...