题意

题目链接

Sol

这个就很没意思了

求个ln,然后系数除以2,然后exp回去。

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4e5 + 10, INF = 1e9 + 10, INV2 = 499122177;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int a[MAXN], b[MAXN], c[MAXN], d[MAXN];
namespace Poly {
int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], D[MAXN], lim;
const int G = 3, mod = 998244353;
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
int fp(int a, int p, int P = mod) {
int base = 1;
for(; p; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base * a % P;
return base;
}
int GetLen(int x) {
int lim = 1;
while(lim < x) lim <<= 1;
return lim;
}
int GetOrigin(int x) {//¼ÆËãÔ­¸ù
static int q[MAXN]; int tot = 0, tp = x - 1;
for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
if(tp > 1) q[++tot] = tp;
for(int i = 2, j; i <= x - 1; i++) {
for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
if(j == tot + 1) return i;
}
}
void Init(/*int P,*/ int Lim) {
//mod = P; G = GetOrigin(mod); Gi = fp(G, mod - 2);
for(int i = 1; i <= Lim; i++) GPow[i] = fp(G, (mod - 1) / i);
}
void NTT(int *A, int lim, int opt) {
int len = 0; for(int N = 1; N < lim; N <<= 1) ++len;
for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
int Wn = GPow[mid << 1];
for(int i = 0; i < lim; i += (mid << 1)) {
for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) {
int x = A[i + j], y = mul(w, A[i + j + mid]);
A[i + j] = add(x, y), A[i + j + mid] = add(x, -y);
}
}
}
if(opt == -1) {
reverse(A + 1, A + lim);
int Inv = fp(lim, mod - 2);
for(int i = 0; i <= lim; i++) mul2(A[i], Inv);
}
}
void Mul(int *a, int *b, int N, int M) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
int lim = 1, len = 0;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i <= N; i++) A[i] = a[i];
for(int i = 0; i <= M; i++) B[i] = b[i];
NTT(A, lim, 1); NTT(B, lim, 1);
for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]);
NTT(B, lim, -1);
for(int i = 0; i <= N + M; i++) b[i] = B[i];
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Inv(int *a, int *b, int len) {//B1 = 2B - A1 * B^2
if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
Inv(a, b, len >> 1);
for(int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i];
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(A[i], mul(B[i], B[i]));
NTT(A, len << 1, -1);
for(int i = 0; i < len; i++) add2(b[i], add(b[i], -A[i]));
for(int i = 0; i < (len << 1); i++) A[i] = B[i] = 0;
}
void Dao(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
}
void Ji(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
}
void Ln(int *a, int *b, int len) {//G(A) = \frac{A}{A'} qiudao zhihou jifen
static int A[MAXN], B[MAXN];
Dao(a, A, len);
Inv(a, B, len);
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) B[i] = mul(A[i], B[i]);
NTT(B, len << 1, -1);
Ji(B, b, len << 1);
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Exp(int *a, int *b, int len) {//F(x) = F_0 (1 - lnF_0 + A) but code ..why....
if(len == 1) return (void) (b[0] = 1);
Exp(a, b, len >> 1); Ln(b, C, len);
C[0] = add(a[0] + 1, -C[0]);
for(int i = 1; i < len; i++) C[i] = add(a[i], -C[i]);
NTT(C, len << 1, 1); NTT(b, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(b[i], C[i]);
NTT(b, len << 1, -1);
for(int i = len; i < (len << 1); i++) C[i] = b[i] = 0;
}
void Sqrt(int *a, int *b, int len) {
static int B[MAXN];
Ln(a, B, len);
for(int i = 0; i < len; i++) B[i] = mul(B[i], INV2);
Exp(B, b, len);
}
};
using namespace Poly;
signed main() {
int N = read();
for(int i = 0; i < N; i++) a[i] = read();
Init(4 * N);
Sqrt(a, b, GetLen(N));
for(int i = 0; i < N; i++) cout << b[i] << ' ';
return 0;
}

洛谷P5205 【模板】多项式开根(多项式sqrt)的更多相关文章

  1. CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)

    传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多 ...

  2. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  3. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  4. cf438E. The Child and Binary Tree(生成函数 多项式开根 多项式求逆)

    题意 链接 Sol 生成函数博大精深Orz 我们设\(f(i)\)表示权值为\(i\)的二叉树数量,转移的时候可以枚举一下根节点 \(f(n) = \sum_{w \in C_1 \dots C_n} ...

  5. 洛谷P2293 高精开根

    锣鼓2293 写完了放代码 应该没什么思维难度 ———————————————————————————————————————————————————————— python真香 m=input() ...

  6. BZOJ 3625:小朋友和二叉树 多项式开根+多项式求逆+生成函数

    生成函数这个东西太好用了~ code: #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s&q ...

  7. Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]

    CF Round250 E. The Child and Binary Tree 题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同. 也就是说:不带标号,孩子有序 ...

  8. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  9. P5277 【模板】多项式开根(加强版)(bsgs or Cipolla)

    题面 传送门 题解 首先你得会多项式开根->这里 其次你得会解形如 \[x^2\equiv a \pmod{p}\] 的方程 这里有两种方法,一个是\(bsgs\)(这里),还有一种是\(Cip ...

随机推荐

  1. Tomcat 启动时项目报错 org.springframework.beans.factory.BeanCreationException

    事情是这样的,最近我们公司需要将开发环境和测试环境分开,所以就需要把所有的项目部署一套新的开发环境. 我们都是通过 Jenkins 进行部署的,先说一下两个环境的配置: 测试环境配置(旧):jdk1. ...

  2. HotSpot 的垃圾收集器

    上图展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用,收集器所处的区域,则表示它是属于新生代还是老年代收集器. 并行(Parallel):指多条垃圾收集器线程并行工 ...

  3. LabVIEW(六):创建VI

    1.多使用快捷键,可以提高工作效率键盘快捷键 说明对象/动作Shift-单击 选取多个对象:将对象添加到当前选择之中.方向箭头键 将选中的对象每次移动一个像素.Shift-方向箭头键 将选中的对象每次 ...

  4. 第八篇: 服务链路追踪(Spring Cloud Sleuth)

    一.简介 一个分布式系统由若干分布式服务构成,每一个请求会经过多个业务系统并留下足迹,但是这些分散的数据对于问题排查,或是流程优化都很有限.   要能做到追踪每个请求的完整链路调用,收集链路调用上每个 ...

  5. Spring autowire自动装配 ByType和ByName

    不使用自动装配前使用的是类的引用: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=& ...

  6. Scala - 快速学习07 - 模式匹配

    Scala中的模式匹配的功能可以应用到switch语句.类型检查.“解构”等多种场合. 简单匹配 Scala的模式匹配最常用于match语句中.Scala的match语句类似Java里的switch. ...

  7. js对象之XMLHttpReques对象学习

    背景:业务需求是,一个前端(手机和浏览器)HTML页面中有图片,按钮......,需要统计用户点击图片或者按钮的次数. 前端实现:通过一个js来统计HTML页面中所有的图片和按钮对象,并给每个对象赋予 ...

  8. asp.net core mvc发布后显示异常错误信息的方法

    在发布的项目文件夹中找到web.config文件,修改: <aspNetCore processPath="dotnet" arguments=".\Cloud.B ...

  9. 项目ITP(四) javaweb http json 交互 in action (服务端 spring 手机端 提供各种工具类)勿喷!

    前言 系列文章:[传送门] 洗了个澡,准备写篇博客.然后看书了.时间 3 7 分.我慢慢规律生活,向目标靠近.  很喜欢珍惜时间像叮当猫一样 正文 慢慢地,二维码实现签到将要落幕了.下篇文章出二维码实 ...

  10. 使用 AcceptTcpClientAsync 进行 异步 操作

    转自:https://gist.github.com/jamesmanning/2622054 using System; using System.Collections.Generic; usin ...