HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625
题意
给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k)。
分析
贴个官方题解
n^k并不好转移,于是用第二类斯特林数转化一下,这样可以预处理第二类斯特林数,而sigma(C(dist(u,v),i))则利用C(n,x)=C(n-1,x)+C(n-1,x-1)来进行树DP转移得到。
设dp[u][k]=sigma(C(dist(u,v),k)),则dp[u][k]=dp[v][k]+dp[v][k-1],这里v是u的儿子。先dfs一次算dp值。
接下来再dfs一次,每次以u为根,计算Eu,注意转移时需要将子结点作为新的根,此时需要计算一下合适的dp值。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1.0)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = 5e4+;
const int maxm = 1e5+;
const int mod = ;
struct edge{
int t,n;
edge(int t=,int n=):
t(t),n(n){}
}e[maxn<<];
int head[maxn],tot;
void addedge(int u,int v){
e[++tot]=edge(v,head[u]),head[u]=tot;
e[++tot]=edge(u,head[v]),head[v]=tot;
}
int n,k;
int s[][],fac[];
void init(){
s[][]=fac[]=;
for(int i=;i<;i++){
fac[i]=fac[i-]*i%mod;
for(int j=;j<;j++){
s[i][j]=(j*s[i-][j]+s[i-][j-])%mod;
}
}
for(int i=;i<;i++)
for(int j=;j<;j++)
s[i][j]=s[i][j]*fac[j]%mod;
}
int dp[maxn][];
void pre_dfs(int u,int p){
dp[u][]=;
for(int i=;i<=k;i++) dp[u][i]=;
for(int i=head[u];~i;i=e[i].n){
int v = e[i].t;
if(v!=p){
pre_dfs(v,u);
for(int j=;j<=k;j++){
dp[u][j]+=dp[v][j];
if(j) dp[u][j]+=dp[v][j-];
dp[u][j]%=mod;
}
}
}
}
int ans[maxn];
void dfs(int u,int p){
ans[u]=;
for(int i=;i<=k;i++) ans[u]=(ans[u]+s[k][i]*dp[u][i])%mod;
for(int i=head[u];~i;i=e[i].n){
int v=e[i].t;
if(v!=p){
for(int j=;j<=k;j++){
dp[u][j]+=mod-dp[v][j];
if(j) dp[u][j]+=mod-dp[v][j-];
dp[u][j]%=mod;
}
for(int j=;j<=k;j++){
dp[v][j]+=dp[u][j];
if(j) dp[v][j]+=dp[u][j-];
dp[v][j]%=mod;
}
dfs(v,u);
for(int j=;j<=k;j++){
dp[v][j]+=mod-dp[u][j];
if(j) dp[v][j]+=mod-dp[u][j-];
dp[v][j]%=mod;
}
for(int j=;j<=k;j++){
dp[u][j]+=dp[v][j];
if(j) dp[u][j]+=dp[v][j-];
dp[u][j]%=mod;
}
}
}
}
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
int t;
scanf("%d",&t);
init();
while(t--){
tot=;
memset(head,-,sizeof head);
int u,v;
scanf("%d%d",&n,&k);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
}
pre_dfs(,-);
dfs(,-);
for(int i=;i<=n;i++) printf("%d\n",ans[i]);
}
return ;
}
HDU - 4625 JZPTREE(第二类斯特林数+树DP)的更多相关文章
- bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...
- bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- HDU4625 JZPTREE——第二类斯特林数
复杂度大概O(nk) 一些尝试:1.对每个点推出1,2,3,,,到k次方的值.但是临项递推二项式展开也要考虑到具体每个点的dist 2.相邻k次方递推呢?递推还是不能避免k次方的展开 k次方比较讨厌, ...
- hdu 2643 rank 第二类斯特林数
题意:给定n个人,要求这n个人的所有可能排名情况,可以多个人并列(这个是关键). 题解:由于存在并列的问题,那么对于n个人,我们最多有n个排名,枚举一下1~n,累加一下就好.(注意这里是变种的斯特林数 ...
- BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】
题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...
- BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp
这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...
- 8-机器分配(hud4045-组合+第二类斯特林数)
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...
随机推荐
- 【XSY2332】Randomized Binary Search Tree 概率DP FFT
题目描述 \(\forall 0\leq i<n\),求有多少棵\(n\)个点,权值和优先级完全随机的treap的树高为\(i\). \(n\leq 30000\) 题解 设\(f_{i,j}\ ...
- Docker 私有仓库 Harbor registry 安全认证搭建 [Https]
Harbor源码地址:https://github.com/vmware/harborHarbort特性:基于角色控制用户和仓库都是基于项目进行组织的, 而用户基于项目可以拥有不同的权限.基于镜像的复 ...
- zabbix 常用监控模板
以下为常用的服务监控,可直接通过zabbix的导入功能导入,做基本修改就可以使用nginx监控模板 <?xml version="1.0" encoding="UT ...
- linux中$#,$0,$1,$2,$@,$*,$$,$?的含义
$# 是传给脚本的参数个数$0 是脚本本身的文件名$1 是脚本后接的第一个参数$2 是脚本后接的第二个参数$@ 是传给脚本的所有参数列表,"$1" "$2" & ...
- 跨SQL注入
概念 SQL Injection按照字面意思来翻译就是"SQL注射",常被叫做"SQL注入",它的含义就是利用某些数据库的外部接口把用户数据插入到实际数据库操作 ...
- [HEOI2016/TJOI2016]游戏 解题报告
[HEOI2016/TJOI2016]游戏 看起来就是个二分图匹配啊 最大化匹配是在最大化边数,那么一条边就代表选中一个坐标内的点 但是每一行不一定只会有一个匹配 于是把点拆开,按照'#'划分一下就好 ...
- selenium js
这几天的任务量比较大,还有一个挺棘手的网站cfda,不巧的是数据量还挺大,40W关于企业信息.上来就是debugger pause,调试中断,开始还是挺懵逼的,但这个还算简单毕竟google,百度,就 ...
- tyvj/joyoi 2018 小猫爬山
2018,这个题号吼哇! 搜索第一题,巨水. WA了一次,因为忘了还原... #include <cstdio> ; int n, W, ans, weigh[N], cost[N]; i ...
- [bzoj3524][Couriers]
题目链接 思路 观察这个\((r - l + 1)/2\),很容易证明,如果一个数出现次数大于\((r - l + 1) / 2\),那么这个区间内第\((r - l + 1) / 2 + 1\)大一 ...
- [luogu5077][Tweetuzki 爱等差数列]
题目链接 思路 数学题 首先列出等差数列求和的式子. \[S = \frac{(n + m)(n - m + 1)}{2}(n为末项,m为首项)\] \[S * 2= (n + m)(n - m + ...