#include

#include

#include

#define Infinity 999  //最大值

#define Max_Vertex_Num 20  //顶点数最多为20

#define Len sizeof(struct arcNode)

#define gLen sizeof(struct Graph)

#define HIT_Ver_Num 11  //共有11个顶点

#define HIT_Arc_Num 18  //共有18个边

//边节点

struct arcNode{

    int adjvex;  //该边所指向的顶点位置

    struct arcNode *nextArc;  //指向下一条边的指针

    int value;  //边的权值

};

//顶点节点

typedef struct verNode{

    char *data;  //顶点信息

    struct arcNode *firstArc;  //指向第一条依附该顶点的边

}verNode,adjList[Max_Vertex_Num];

//图的邻接表存储类型

struct Graph{

    int g_arcs[Max_Vertex_Num][Max_Vertex_Num];

    adjList vertices;  //声明一个存储顶点的数组

    int vexNum,arcNum;  //vexNum 是顶点数,arcNum 是边数

};

struct Graph * creatGraph()

{

    int i,j,a,b;

    struct Graph *graph = (struct Graph *)malloc(gLen);

    struct arcNode *arc_1 = (struct arcNode *)malloc(Len);//N楼

    struct arcNode *arc_2 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_3 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_4 = (struct arcNode *)malloc(Len);//食堂

    struct arcNode *arc_5 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_6 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_7 = (struct arcNode *)malloc(Len);//教师公寓

    struct arcNode *arc_8 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_9 = (struct arcNode *)malloc(Len);//M楼

    struct arcNode *arc_10 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_11 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_12 = (struct arcNode *)malloc(Len);//G楼

    struct arcNode *arc_13 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_14 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_15 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_16 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_17 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_18 = (struct arcNode *)malloc(Len);//主楼

    struct arcNode *arc_19 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_20 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_21 = (struct arcNode *)malloc(Len);//H楼

    struct arcNode *arc_22 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_23 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_24 = (struct arcNode *)malloc(Len);//体育场

    struct arcNode *arc_25 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_26 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_27 = (struct arcNode *)malloc(Len);//校训石

    struct arcNode *arc_28 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_29 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_30 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_31 = (struct arcNode *)malloc(Len);//研究院

    struct arcNode *arc_32 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_33 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_34 = (struct arcNode *)malloc(Len);//学校正门

    struct arcNode *arc_35 = (struct arcNode *)malloc(Len);

    struct arcNode *arc_36 = (struct arcNode *)malloc(Len);

    char *Data[HIT_Ver_Num] = {"N楼","食堂","教师公寓","M楼","G楼","主楼","H楼","体育场","校训石","研究院","学校正门"};

    if(graph==NULL||arc_1==NULL||arc_2==NULL||arc_3==NULL||arc_4==NULL||arc_5==NULL||arc_6==NULL||arc_7==NULL||arc_8==NULL||arc_9==NULL

       ||arc_10==NULL||arc_11==NULL||arc_12==NULL||arc_13==NULL||arc_14==NULL||arc_15==NULL||arc_16==NULL||arc_17==NULL||arc_18==NULL

       ||arc_19==NULL||arc_20==NULL||arc_21==NULL||arc_22==NULL||arc_23==NULL||arc_24==NULL||arc_25==NULL||arc_26==NULL||arc_27==NULL

       ||arc_28==NULL||arc_29==NULL||arc_30==NULL||arc_31==NULL||arc_32==NULL||arc_33==NULL||arc_34==NULL||arc_35==NULL||arc_36==NULL)

       {

           printf("内存不足\n退出程序");

           exit(0);

       }

    graph->vexNum = HIT_Ver_Num;

    graph->arcNum = HIT_Arc_Num;

    for(j = 0; j < graph->vexNum; j++)

    {

        graph->vertices[j].data = Data[j];

        graph->vertices[j].firstArc = NULL;

    }

    arc_1->value = 130;

    arc_1->adjvex = 3;

    arc_1->nextArc = graph->vertices[0].firstArc;

    graph->vertices[0].firstArc = arc_1;

    arc_2->value = 140;

    arc_2->adjvex = 4;

    arc_2->nextArc = graph->vertices[0].firstArc;

    graph->vertices[0].firstArc = arc_2;

    arc_3->value = 55;

    arc_3->adjvex = 1;

    arc_3->nextArc = graph->vertices[0].firstArc;

    graph->vertices[0].firstArc = arc_3;//End N楼

    arc_4->value = 55;

    arc_4->adjvex = 0;

    arc_4->nextArc = graph->vertices[1].firstArc;

    graph->vertices[1].firstArc = arc_4;

    arc_5->value = 150;

    arc_5->adjvex = 4;

    arc_5->nextArc = graph->vertices[1].firstArc;

    graph->vertices[1].firstArc = arc_5;

    arc_6->value = 110;

    arc_6->adjvex = 2;

    arc_6->nextArc = graph->vertices[1].firstArc;

    graph->vertices[1].firstArc = arc_6;//End 食堂

    arc_7->value = 110;

    arc_7->adjvex = 1;

    arc_7->nextArc = graph->vertices[2].firstArc;

    graph->vertices[2].firstArc = arc_7;

    arc_8->value = 105;

    arc_8->adjvex = 6;

    arc_8->nextArc = graph->vertices[2].firstArc;

    graph->vertices[2].firstArc = arc_8;//End 教师公寓

    arc_9->value = 130;

    arc_9->adjvex = 0;

    arc_9->nextArc = graph->vertices[3].firstArc;

    graph->vertices[3].firstArc = arc_9;

    arc_10->value = 40;

    arc_10->adjvex = 4;

    arc_10->nextArc = graph->vertices[3].firstArc;

    graph->vertices[3].firstArc = arc_10;

    arc_11->value = 70;

    arc_11->adjvex = 7;

    arc_11->nextArc = graph->vertices[3].firstArc;

    graph->vertices[3].firstArc = arc_11;//End M楼

    arc_12->value = 40;

    arc_12->adjvex = 3;

    arc_12->nextArc = graph->vertices[4].firstArc;

    graph->vertices[4].firstArc = arc_12;

    arc_13->value = 140;

    arc_13->adjvex = 0;

    arc_13->nextArc = graph->vertices[4].firstArc;

    graph->vertices[4].firstArc = arc_13;

    arc_14->value = 150;

    arc_14->adjvex = 1;

    arc_14->nextArc = graph->vertices[4].firstArc;

    graph->vertices[4].firstArc = arc_14;

    arc_15->value = 40;

    arc_15->adjvex = 5;

    arc_15->nextArc = graph->vertices[4].firstArc;

    graph->vertices[4].firstArc = arc_15;

    arc_16->value = 100;

    arc_16->adjvex = 8;

    arc_16->nextArc = graph->vertices[4].firstArc;

    graph->vertices[4].firstArc = arc_16;

    arc_17->value = 65;

    arc_17->adjvex = 7;

    arc_17->nextArc = graph->vertices[4].firstArc;

    graph->vertices[4].firstArc = arc_17;//End G楼

    arc_18->value = 40;

    arc_18->adjvex = 4;

    arc_18->nextArc = graph->vertices[5].firstArc;

    graph->vertices[5].firstArc = arc_18;

    arc_19->value = 115;

    arc_19->adjvex = 6;

    arc_19->nextArc = graph->vertices[5].firstArc;

    graph->vertices[5].firstArc = arc_19;

    arc_20->value = 50;

    arc_20->adjvex = 8;

    arc_20->nextArc = graph->vertices[5].firstArc;

    graph->vertices[5].firstArc = arc_20;//End 主楼

    arc_21->value = 105;

    arc_21->adjvex = 2;

    arc_21->nextArc = graph->vertices[6].firstArc;

    graph->vertices[6].firstArc = arc_21;

    arc_22->value = 115;

    arc_22->adjvex = 5;

    arc_22->nextArc = graph->vertices[6].firstArc;

    graph->vertices[6].firstArc = arc_22;

    arc_23->value = 60;

    arc_23->adjvex = 9;

    arc_23->nextArc = graph->vertices[6].firstArc;

    graph->vertices[6].firstArc = arc_23;//End H楼

    arc_24->value = 70;

    arc_24->adjvex = 3;

    arc_24->nextArc = graph->vertices[7].firstArc;

    graph->vertices[7].firstArc = arc_24;

    arc_25->value = 65;

    arc_25->adjvex = 4;

    arc_25->nextArc = graph->vertices[7].firstArc;

    graph->vertices[7].firstArc = arc_25;

    arc_26->value = 100;

    arc_26->adjvex = 10;

    arc_26->nextArc = graph->vertices[7].firstArc;

    graph->vertices[7].firstArc = arc_26;//End 体育场

    arc_27->value = 100;

    arc_27->adjvex = 4;

    arc_27->nextArc = graph->vertices[8].firstArc;

    graph->vertices[8].firstArc = arc_27;

    arc_28->value = 50;

    arc_28->adjvex = 5;

    arc_28->nextArc = graph->vertices[8].firstArc;

    graph->vertices[8].firstArc = arc_28;

    arc_29->value = 50;

    arc_29->adjvex = 9;

    arc_29->nextArc = graph->vertices[8].firstArc;

    graph->vertices[8].firstArc = arc_29;

    arc_30->value = 40;

    arc_30->adjvex = 10;

    arc_30->nextArc = graph->vertices[8].firstArc;

    graph->vertices[8].firstArc = arc_30;//End 校训石

    arc_31->value = 50;

    arc_31->adjvex = 8;

    arc_31->nextArc = graph->vertices[9].firstArc;

    graph->vertices[9].firstArc = arc_31;

    arc_32->value = 60;

    arc_32->adjvex = 6;

    arc_32->nextArc = graph->vertices[9].firstArc;

    graph->vertices[9].firstArc = arc_32;

    arc_33->value = 70;

    arc_33->adjvex = 10;

    arc_33->nextArc = graph->vertices[9].firstArc;

    graph->vertices[9].firstArc = arc_33;//End 研究院

    arc_34->value = 100;

    arc_34->adjvex = 7;

    arc_34->nextArc = graph->vertices[10].firstArc;

    graph->vertices[10].firstArc = arc_34;

    arc_35->value = 40;

    arc_35->adjvex = 8;

    arc_35->nextArc = graph->vertices[10].firstArc;

    graph->vertices[10].firstArc = arc_35;

    arc_36->value = 70;

    arc_36->adjvex = 9;

    arc_36->nextArc = graph->vertices[10].firstArc;

    graph->vertices[10].firstArc = arc_36;//End 学校正门

    for(a = 0; a < graph->vexNum; a++)  //置为无穷大(999)

    {

        for(b = 0; b < graph->vexNum; b++)

        {

            graph->g_arcs[a][b] = Infinity;

        }

    }

    for(i = 0; i < graph->vexNum; i++)  //将相应位置置权值

    {

        while(graph->vertices[i].firstArc != NULL)

        {

            graph->g_arcs[i][graph->vertices[i].firstArc->adjvex] = graph->vertices[i].firstArc->value;

            graph->vertices[i].firstArc = graph->vertices[i].firstArc->nextArc;

        }

    }

    return graph;

}

//单源最短路径(即 Dijkstra算法)

void shortestPath_Dij(struct Graph graph,int v0)

{

    int i = 0,v,w,min,pre;

    int arrayD[HIT_Ver_Num],arrayP[HIT_Ver_Num];//辅助数组

    int arrayFinal[HIT_Ver_Num];//辅助数组

    //初始化

    for(v = 0; v < graph.vexNum; v++)

    {

        arrayFinal[v] = 0;

        arrayD[v] =graph.g_arcs[v0][v];

        if(arrayD[v] < Infinity)

        {

            arrayP[v] = v0;

        }

        else

        {

            arrayP[v] = -1;

        }

    }

    arrayFinal[v0] = 1;

    arrayP[v0] = -1;

    for(i = 1; i < graph.vexNum; i++)

    {

        min = Infinity;

        //加入具有最小代价的邻居节点

        for(w = 0; w < graph.vexNum; w++)

        {

            if(!arrayFinal[w] && (arrayD[w] < min))

            {

                v = w;

                min = arrayD[w];

            }

        }

        arrayFinal[v] = 1;

        //计算加入新的节点后,更新路径使得其产生代价最短

        for(w = 0; w < graph.vexNum; w++)

        {

            if(!arrayFinal[w] && (min + graph.g_arcs[v][w] < arrayD[w]))

            {

                arrayD[w] = min + graph.g_arcs[v][w];

                arrayP[w] = v;

            }

        }

    }

    for(i = 0; i < graph.vexNum; i++)

    {

        if(v0 == i)

            printf("目的地与起点重合,权值为零\n\n");

        else

        {

            printf("权值为:%d\n",arrayD[i]);

            printf("%s",graph.vertices[i].data);

            pre = arrayP[i];

            while(pre != -1)

            {

                printf(" <-- %s",graph.vertices[pre].data);

                pre = arrayP[pre];

            }

            printf("\n\n");

        }

    }

}

void shortestPath_Floyd(struct Graph graph,int v1,int v2)

{

    int i,j,k,temp;

    int arrayPath[HIT_Ver_Num][HIT_Ver_Num],arrayDis[HIT_Ver_Num][HIT_Ver_Num];

    //初始化

    for(i = 0; i < graph.vexNum; i++)

    {

        for(j = 0; j < graph.vexNum; j++)

        {

            if(graph.g_arcs[i][j] < Infinity)

                arrayPath[i][j] = j;

            else

                arrayPath[i][j] = -1;

            arrayDis[i][j] = graph.g_arcs[i][j];

        }

    }

    for(k = 0; k < graph.vexNum; k++)//对所有顶点进行试探

    {

        for(i = 0; i < graph.vexNum; i++)

        {

            for(j = 0; j < graph.vexNum; j++)

            {

                if(arrayDis[i][j] > arrayDis[i][k] + arrayDis[k][j])

                {

                    arrayDis[i][j] = arrayDis[i][k] + arrayDis[k][j];//取较小者

                    arrayPath[i][j] = arrayPath[i][k];//改Vi的后继

                }

            }

        }

    }

    printf("从 %s 到 %s 的最短距离为:%d\n",graph.vertices[v1].data,graph.vertices[v2].data,arrayDis[v1][v2]);

    printf("最短路径为:\t");

    temp = arrayPath[v1][v2];

    printf("%s --> ",graph.vertices[v1].data);//输出V1

    while(temp != v2)//temp不等于路径终点v2时

    {

        printf("%s --> ",graph.vertices[temp].data);//输出

        temp = arrayPath[temp][v2];//求路径上下一顶点

    }

    printf("%s.",graph.vertices[v2].data);//输出V2

    printf("\n");

}

int main()

{

    int b,c,count = 0;

    int num,i,a,i_2,i_3;

    char *nodeName_1 = (char*)malloc(10);//必须得用malloc函数申请空间

    char *nodeName_2 = (char*)malloc(10);//必须得用malloc函数申请空间

    char *nodeName_3 = (char*)malloc(10);//必须得用malloc函数申请空间

    struct Graph *graph;

    graph = creatGraph();  //生成图

    for(b=0;bvexNum;b++)

    {

        for(c = 0;cvexNum;c ++)

        {

            printf("%d\t",graph->g_arcs[b][c]);

        }

        printf("\n");

    }

    printf("请按提示进行操作:\n");

    printf("1、输入任意一个节点的名称,显示它到各个节点的最短路径及最短距离。\n");

    printf("2、输入任意两个节点的名称,显示两点间最短路径和最短距离。\n");

    printf("请输入 1 或 2 进行查询。\n");

    scanf("%d",&num);

    switch(num)

    {

        case 1:

            for(a = 0;avexNum;a++)

            {

                printf("%s ",graph->vertices[a].data);

            }

            printf("\n");

            printf("请输入节点名称:\n");

            scanf("%s",nodeName_1);

            for(i = 0; i < graph->vexNum; i++)

            {

                if(strcmp(nodeName_1,graph->vertices[i].data) != 0)

                {

                    count++;

                }

                if(0 == strcmp(nodeName_1,graph->vertices[i].data))

                {

                    shortestPath_Dij(*graph,i);

                }

            }

            if(graph->vexNum == count)

            {

                printf("输入名称有误!退出程序!");

                exit(0);

            }

        break;

        case 2:

            for(a = 0;avexNum;a++)

            {

                printf("%s ",graph->vertices[a].data);

            }

            printf("\n");

            printf("请分别输入第一个节点名称:\n");

            scanf("%s",nodeName_2);

            printf("请分别输入第二个节点名称:\n");

            scanf("%s",nodeName_3);

            for(i = 0; i < graph->vexNum; i++)

            {

                if(0 == strcmp(nodeName_2,graph->vertices[i].data))

                {

                    i_2 = i;

                }

                if(0 == strcmp(nodeName_3,graph->vertices[i].data))

                {

                    i_3 = i;

                }

            }

            if(i_2 == i_3)

            {

                printf("输入的起点和终点重合,退出程序!");

                exit(0);

            }

            shortestPath_Floyd(*graph,i_2,i_3);

        break;

        default:

            printf("输入有误!退出程序!");

            exit(0);

        break;

    }

    return 0;

}

  

实验结果:


Dijkstra和Floyd算法的更多相关文章

  1. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  2. Dijkstra与Floyd算法

    1. Dijkstra算法 1.1 定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点 ...

  3. Dijkstra and Floyd算法

    Dijkstra算法 算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集 ...

  4. 图的最短路径——dijkstra算法和Floyd算法

    dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...

  5. (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍

    这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...

  6. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  7. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  8. 最短路径—大话Dijkstra算法和Floyd算法

    Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...

  9. Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法

    1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...

随机推荐

  1. 【Gym 100947I】What a Mess

    BUPT 2017 summer training (for 16) #1D 题意 找到n个数里面有多少对具有倍数关系.\(1 ≤ n ≤ 10^4,2 ≤ a_i ≤ 10^6\) 题解 枚举一个数 ...

  2. [USACO08DEC]在农场万圣节Trick or Treat on the Farm【Tarja缩点+dfs】

    题目描述 每年,在威斯康星州,奶牛们都会穿上衣服,收集农夫约翰在N(1<=N<=100,000)个牛棚隔间中留下的糖果,以此来庆祝美国秋天的万圣节. 由于牛棚不太大,FJ通过指定奶牛必须遵 ...

  3. emwin之求解窗口坐标及大小的一种方法

    @2019-01-26 [小记] 使用函数 WM_GetWindowRectEx(hItem, &Rect),坐标就存储在对象 Rect 中,可用于一些默认创建的窗口

  4. CANOE入门(三)

    最好的学习方式是什么?模仿.有人会问,那不是山寨么?但是我认为,那是模仿的初级阶段,当把别人最好的设计已经融化到自己的血液里,变成自己的东西,而灵活运用的时候,才是真正高级阶段.正所谓画虎画皮难画骨. ...

  5. hdu 1907 (尼姆博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1907 Problem Description Little John is playing very ...

  6. Codeforces1076D. Edge Deletion(最短路树+bfs)

    题目链接:http://codeforces.com/contest/1076/problem/D 题目大意: 一个图N个点M条双向边.设各点到点1的距离为di,保证满足条件删除M-K条边之后使得到点 ...

  7. 【洛谷P4878】布局

    题目大意:给定一个长度为 N 的递增序列,有 M 组差分约束关系,求满足这些约束关系时,第一个数和第 N 个数的差是多少. 题解:首先,能否满足约束关系需要判断一下负环,若满足约束关系,再从第一个点 ...

  8. Xml一(基本语法和约束)、

    XML:eXtensible Markup Language 可扩展标记语言 version="1.0" * 可扩展:所有的标签都是自定义的. * 功能:数据存储 * 配置文件 * ...

  9. get请求中params参数的使用

    一.当发送一个get请求的时候,如果有参数,那么参数应该怎么处理呢? 比如,百度阅读里面,查询书的列表,点击进去,它是一个get请求,地址是:https://yuedu.baidu.com/book/ ...

  10. python基础四-文件读取

    文件读取 open()接受一个参数:要打开的文件名, 并返回一个表示文件的对象, 存储到后面的变量中 python会在当前执行文件所在目录查找 可以使用绝对路径, 在linux中使用'/', 在win ...