基本形式

线性回归非常直观简洁,是一种常用的回归模型,大叔总结如下:

设有样本\(X\)形如:

\[\begin{pmatrix}
x_1^{(1)} & x_2^{(1)} & \cdots &x_n^{(1)}\\
x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)}\\
\vdots & \vdots & \vdots & \vdots\\
x_1^{(m)} & x_2^{(m)} & \cdots & x_n^{(m)}\\
\end{pmatrix} \]

对应的标记\(\vec{y}\)形如:

\[\begin{pmatrix}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(m)} \\
\end{pmatrix}\]

其中,矩阵\(X\)的每一行表示一个样本,一共有m个样本;每列表示样本的一个属性,共有n个属性。设假设函数

\[h(x_1,x_2 \dots x_n)= \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n \tag{1}
\]

设\(x_0=1\),则(1)式重新写为

\[h(x_1,x_2 \dots x_n)= \theta_0x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n \tag{2}
\]

定义代价函数(均方误差)

\[j(\theta_0,\theta_1\dots \theta_n)=\frac{1}{2m}\sum_{k=1}^m (h(x_1^{(k)},x_2^{(k)} \dots x_n^{(k)}) - y^{(k)})^2
\]

即:

\[j(\theta_0,\theta_1\dots \theta_n)=\frac{1}{2m}\sum_{k=1}^m (\theta_0x_0^{(k)} + \theta_1 x_1^{(k)} + \theta_2 x_2^{(k)} + \dots + \theta_n x_n^{(k)} - y^{(k)})^2 \tag{3}
\]

这里的分母乘以2并没有意义,只是为了求导后正好约掉。另外,其实求绝对值之和更直观,但是计算不方便,求平方后再求和效果是一样的,而且计算非常容易。我们的目标是根据样本数据求出使得代价函数取值最小的参数\(\vec\theta\),均方误差越小,说明以\(\vec\theta\)为参数的线性函数拟合样本的能力越强

求解参数\(\vec\theta\)

梯度下降法

关于梯度下降法可参考 大叔学ML第一:梯度下降

由于代价函数是一个凸函数,可以用梯度下降法找到最小值。由于用到梯度,首先对\(\theta_0\)、\(\theta_1\)、\(\theta_2\)直到\(\theta_n\)求偏导:

  • \(\frac{\partial}{\partial\theta_0}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)} - y^{(k)})x_0^{(k)}\)
  • \(\frac{\partial}{\partial\theta_1}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_1^{(k)}\)
  • \(\dots\)
  • \(\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)}\)

可归纳为:\(\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)}\tag{4}\)

万事俱备,现在可以编程了。创建一组测试数据,每组数据包括3个属性,我们来编码拟合出一个线性函数:

import numpy as np

def gradient(X, Y, m, theta):
''' 求theta位置的梯度. Args:
X: 样本
Y: 样本标记
m: 样本数
theta: 欲求梯度的位置 Returns:
gi: theta处函数的梯度值
'''
theta_size = np.size(theta)
g = np.zeros(theta_size) for i in range(theta_size):
gi = 0 #第i个theta分量对应的偏导
for j in range(m):
gi += ((np.dot(X[j], theta) - Y[j]) * X[j, i])
gi = gi / m
g[i] = gi return g def gradient_descent(X, Y, step = 0.02, threshold = 0.01):
''' 梯度下降法求使代价函数最小的 theta Args:
X: 样本
Y: 样本标记
step:步长
threshold:梯度模长阈值,低于此值时停止迭代
Returns:
theta: 使代价函数取最小值的theta
'''
theta = np.random.rand(4)
grad = gradient(X, Y, np.size(X, 0), theta)
norm = np.linalg.norm(grad) while(norm > threshold):
theta -= step * grad
grad = gradient(X, Y, np.size(X, 0), theta)
norm = np.linalg.norm(grad)
return theta ''' 以下是测试数据 ''' # 测试用线性函数
def linear_function(x1, x2, x3):
result = 1 + 2 * x1 + 3 * x2 + 4 * x3
result = result + np.random.rand() # 噪音
return result # 计算函数值
def calculate(X):
rowsnumber = np.size(X, axis = 0)
Y = [linear_function (X[i, 0], X[i, 1], X[i, 2]) for i in range(0, rowsnumber)]
return Y if __name__ == "__main__":
row_count = 500
X = np.random.randint(0, 10, (row_count, 3)) # 随机产生row_count个样本
Y = calculate(X) # 计算标记 X0 = np.ones((row_count, 1))
X = np.hstack((X0, X)) # 补充一列1 theta = gradient_descent(X, Y)
print('theta is ', theta)

运行结果:theta is [1.41206515 2.00558441 3.0013728 4.00684577]

上面的迭代方法被称为批量梯度下降法,参考式(4),计算梯度时用到了所有的样本。梯度下降法还有个简化的版本,叫做随机梯度下降法,每次计算梯度时只随机使用一个样本,而不是所有样本,这样可以加快计算速度。将式(4)修改为:

\[\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = (\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)} \tag{5}
\]

其中:\(1 \leq k \leq m\)

将上面Python代码中的方法gradient替换一下:

def gradient_sgd(X, Y, m, theta):
''' 求theta位置的梯度. Args:
X: 样本
Y: 样本标记
m: 样本数
theta: 欲求梯度的位置 Returns:
gi: theta处函数的梯度值
'''
theta_size = np.size(theta)
g = np.zeros(theta_size) for i in range(theta_size):
random_Index = np.random.randint(1, m + 1)
gi = ((np.dot(X[random_Index], theta) - Y[random_Index]) * X[random_Index, i])
g[i] = gi return g

运行结果:

theta is [1.43718942 2.00043557 3.00620849 4.00674728]

感觉像是飞起来。随机梯度下降法肯定没有批量梯度下降法准确,所有还有第三种下降法,叫做小批量梯度下降法,介于批量梯度下降法和随机梯度下降法之间,每次计算梯度使用随机的一小批样本,此处不再code说明。

正规方程导法

因为代价函数是个凸函数,那么我们可以对代价函数求导,让其导数等于0的点即为最小值点。

为方便计算,我们在前面增加了一个值恒等于1的\(x_0\),这样就把线性函数的偏置项去掉了,参考式(2),重新定义矩阵\(X\)为:

\[\begin{pmatrix}
x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & \cdots &x_n^{(1)}\\
x_0^{(2)} &x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)}\\
\vdots & \vdots & \vdots & \vdots & \vdots\\
x_0^{(m)} & x_1^{(m)} & x_2^{(m)} & \cdots & x_n^{(m)}\\
\end{pmatrix}\]

代价函数式(3)等价于:

\[J(\vec\theta)=\frac{1}{2m}||X\vec\theta - \vec{y}||^2 \tag{6}
\]

化简式(6):

\[\begin{align}
J(\vec\theta)&=\frac{1}{2m}||X\vec\theta - \vec{y}||^2 \\
&=\frac{1}{2m}(X\vec\theta - \vec{y})^T(X\vec\theta - \vec{y}) \\
&=\frac{1}{2m}(\vec\theta^TX^T - \vec{y}^T)(X\vec\theta - \vec{y}) \\
&=\frac{1}{2m}(\vec\theta^TX^TX\vec\theta - \vec\theta^TX^T\vec{y}- \vec{y}^TX\vec\theta + \vec{y}^T\vec{y})\\
&=\frac{1}{2m}(\vec\theta^TX^TX\vec\theta - 2\vec{y}^TX\vec\theta + \vec{y}^T\vec{y})\\
\end{align}\]

对\(\vec\theta\)求导:

\[\frac{d}{d\vec\theta}J(\vec\theta)=\frac{1}{m}(X^TX\vec\theta-X^T\vec{y})
\]

令其等于0,得:$$\vec\theta=(XTX){-1}X^T\vec{y}\tag{7}$$

将上面的Python代码改为:

# 测试用线性函数
def linear_function(x1, x2, x3):
result = 1 + 2 * x1 + 3 * x2 + 4 * x3
result = result + np.random.rand() # 噪音
return result # 计算函数值
def calculate(X):
rowsnumber = np.size(X, axis = 0)
Y = [linear_function (X[i, 0], X[i, 1], X[i, 2]) for i in range(0, rowsnumber)]
return Y if __name__ == "__main__":
row_count = 500
X = np.random.randint(0, 10, (row_count, 3)) # 随机产生row_count个样本
Y = calculate(X) # 计算标记 X0 = np.ones((row_count, 1))
X = np.hstack((X0, X)) # 补充一列1 theta = np.dot(np.dot(np.linalg.pinv(np.dot(X.T, X)), X.T), np.array(Y).T)
print('theta is ', theta)

运行结果:theta is [1.49522638 1.99801209 2.99704438 4.00427252]

和梯度下降法比较,光速的感觉,那为什么还要用梯度下降法呢?这是因为求矩阵的逆算法复杂度较高,达爷的建议是:如果样本的属性超过一万个,考虑使用梯度下降法。

调用函数库

其实我们也可以直接调用类库的,有很多类库可以做回归算法,比如:

import numpy as np
from sklearn import linear_model # 测试用线性函数
def linear_function(x1, x2, x3):
result = 1 + 2 * x1 + 3 * x2 + 4 * x3
result = result + np.random.rand() # 噪音
return result # 计算函数值
def calculate(X):
rowsnumber = np.size(X, axis = 0)
Y = [linear_function (X[i, 0], X[i, 1], X[i, 2]) for i in range(0, rowsnumber)]
return Y if __name__ == "__main__":
row_count = 500
X = np.random.randint(0, 10, (row_count, 3)) # 随机产生row_count个样本
Y = calculate(X) # 计算标记 regr = linear_model.LinearRegression()
regr.fit(X, np.array(Y).T) a, b = regr.coef_, regr.intercept_
print(a)
print(b)

运行结果:

[2.00384674 2.99234723 3.99603084]

1.5344826581936104

和我们自己算的差不多吧。还有很多其他的类库可以调用,大叔没有一一去找。可能通常只要调用类库就足够了,不需要我们自己写,不过还是知道原理比较好,遇到问题才好对症下药。

我是这样理解的:我们能够调用到的常见的(广义)线性回归库,其实内部都是用直接求导法实现的(没有看过源码,猜测是直接求导,如果是梯度下降,不太可能自动算出步长),如果样本的属性比较少,比如少于一万个,调用类库就好,类库肯定比我们大部分人自己写的强,但是当样本属性非常多时,用直接求导法求解速度太慢,这时才需要我们自己写梯度下降代码。

大叔学ML第二:线性回归的更多相关文章

  1. 大叔学ML第四:线性回归正则化

    目录 基本形式 梯度下降法中应用正则化项 正规方程中应用正则化项 小试牛刀 调用类库 扩展 正则:正则是一个汉语词汇,拼音为zhèng zé,基本意思是正其礼仪法则:正规:常规:正宗等.出自<楚 ...

  2. 大叔学ML第五:逻辑回归

    目录 基本形式 代价函数 用梯度下降法求\(\vec\theta\) 扩展 基本形式 逻辑回归是最常用的分类模型,在线性回归基础之上扩展而来,是一种广义线性回归.下面举例说明什么是逻辑回归:假设我们有 ...

  3. 大叔学ML第三:多项式回归

    目录 基本形式 小试牛刀 再试牛刀 调用类库 基本形式 上文中,大叔说道了线性回归,线性回归是个非常直观又简单的模型,但是很多时候,数据的分布并不是线性的,如: 如果我们想用高次多项式拟合上面的数据应 ...

  4. 大叔学ML第一:梯度下降

    目录 原理 实践一:求\(y = x^2 - 4x + 1\)的最小值 实践二:求\(z = x^2 + y^2 + 5\)的最小值 问答时间 原理 梯度下降是一个很常见的通过迭代求解函数极值的方法, ...

  5. [老老实实学WCF] 第二篇 配置WCF

    老老实实学WCF 第二篇 配置WCF 在上一篇中,我们在一个控制台应用程序中编写了一个简单的WCF服务并承载了它.先回顾一下服务端的代码: using System; using System.Col ...

  6. 跟我学SpringCloud | 第二篇:注册中心Eureka

    Eureka是Netflix开源的一款提供服务注册和发现的产品,它提供了完整的Service Registry和Service Discovery实现.也是springcloud体系中最重要最核心的组 ...

  7. ml的线性回归应用(python语言)

    线性回归的模型是:y=theta0*x+theta1   其中theta0,theta1是我们希望得到的系数和截距. 下面是代码实例: 1. 用自定义数据来看看格式: # -*- coding:utf ...

  8. 简单学C——第二天

                 控制结构(-) 相信大家对流程图肯定很熟悉.下面我将介绍的正是关于此方面的,c语言中,控制结构大体分为选择结构和循环结构. 一.选择结构:     先贴出一般用于选择结构的语 ...

  9. (转)[老老实实学WCF] 第二篇 配置WCF

    第二篇 配置WCF 在上一篇中,我们在一个控制台应用程序中编写了一个简单的WCF服务并承载了它.先回顾一下服务端的代码: using System; using System.Collections. ...

随机推荐

  1. python—列表生成式

    #原始写法 l=[] for i in range(1,11): l.append(str(i).zfill(2)) print(l) #结果:['01', '02', '03', '04', '05 ...

  2. css与dom的渲染与解析

    js阻塞文档渲染与解析那么css呢? 结论一.css:阻塞渲染,不阻塞dom解析 <head> <script> document.addEventListener('DOMC ...

  3. SpringCloud微服务负载均衡与网关

    1.使用ribbon实现负载均衡ribbon是一个负载均衡客户端 类似nginx反向代理,可以很好的控制htt和tcp的一些行为.Feign默认集成了ribbon. 启动两个会员服务工程,端口号分别为 ...

  4. File初识和练习

    目录 File类 File对象的构建 File文件名.路径的获取 文件的状态 文件的其他操作 创建文件夹 列出下一级 实战练习1:列出子孙级目录及名称 实战练习2:列出文件及其子孙文件的总大小 实战练 ...

  5. zz-人生感悟

    1. 社交感想 首先来看一下聪明人和普通人的区别是什么? 普通人思考问题都是一步一步的来,由A推理出B,B推导到C,再推导出D,最后得出E,然而聪明人却可以由A直接推算到E. 这就像开车,普通人的是手 ...

  6. springboot Ehcache使用

    .Ehcache简单说明及使用 EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider. Ehcache是一种广泛使用的开源Ja ...

  7. redis设计原则

    基本原则 只应将热数据放到缓存中 所有缓存信息都应设置过期时间 缓存过期时间应当分散以避免集中过期 缓存key应具备可读性 应避免不同业务出现同名缓存key --->解决方法:  保证键名不冲突 ...

  8. idea debug快捷键 快速查找类

    快速查找类或者文件比如xml .txt Ctrl + Shift + N 快速查找类 双击Shift 选中代码右移 Tab 选中代码左移 Shift + Tab 选中代码上下移 Shift + Alt ...

  9. Python3创建项目时创建了一个叫做“keyword"的包,运行项目时报ImportError: cannot import name 'iskeyword'错误

    导致该问题的原因为在Python3中keyword是python的关键字包,所以在给包命名时应避免使用关键字进行命名.解决方法,将keword包名称修改为'keywords'就可以了.

  10. Spring Boot jsp页面无法跳转问题

    可能的情况如下: 1.未在pom.xml中添加依赖 <!-- jsp 视图支持--> <dependency>    <groupId>org.apache.tom ...