【CF908G】New Year and Original Order

题意:令S(i)表示将i中所有数位上的数拿出来,从小到大排序后组成一个新的数的值。如S(50394)=3459。求$\sum\limits_{i=1}^nS(i)$。

$n\le 10^{700}$。

题解:比较难的数位DP。我们考虑分别计算每个数字的贡献。令f0[i][a][b]表示考虑到第i位数,其中数字a的最高为是b的数的数量,再令f1[i][a][b]表示a这个数的贡献。再设g0,g1表示小于等于n的所有数的DP值。转移比较复杂,我能1A也是不容易啊。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1000000007;
int n;
int v[705];
ll ans;
ll f0[705][10][705],f1[705][10][705],g0[705][10][705],g1[705][10][705],pw[705];
char str[705];
int main()
{
int i,a,b,j;
scanf("%s",str),n=strlen(str);
for(pw[0]=i=1;i<=n;i++) v[i]=str[n-i]-'0',pw[i]=pw[i-1]*10%P;
for(a=0;a<=9;a++) f0[0][a][0]=g0[0][a][0]=1;
for(i=1;i<=n;i++) for(a=0;a<=9;a++) for(b=0;b<=9;b++)
{
if(b==8)
{
b++,b--;
}
if(a<b) for(j=0;j<i;j++)
{
f1[i][b][j]=(f1[i][b][j]+f1[i-1][b][j])%P;
f0[i][b][j]=(f0[i][b][j]+f0[i-1][b][j])%P;
if(a<v[i])
{
g1[i][b][j]=(g1[i][b][j]+f1[i-1][b][j])%P;
g0[i][b][j]=(g0[i][b][j]+f0[i-1][b][j])%P;
}
else if(a==v[i])
{
g1[i][b][j]=(g1[i][b][j]+g1[i-1][b][j])%P;
g0[i][b][j]=(g0[i][b][j]+g0[i-1][b][j])%P;
}
}
else if(a==b) for(j=0;j<i;j++)
{
f1[i][b][j+1]=(f1[i][b][j+1]+f1[i-1][b][j]+f0[i-1][b][j]*a*pw[j])%P;
f0[i][b][j+1]=(f0[i][b][j+1]+f0[i-1][b][j])%P;
if(a<v[i])
{
g1[i][b][j+1]=(g1[i][b][j+1]+f1[i-1][b][j]+f0[i-1][b][j]*a*pw[j])%P;
g0[i][b][j+1]=(g0[i][b][j+1]+f0[i-1][b][j])%P;
}
else if(a==v[i])
{
g1[i][b][j+1]=(g1[i][b][j+1]+g1[i-1][b][j]+g0[i-1][b][j]*a*pw[j])%P;
g0[i][b][j+1]=(g0[i][b][j+1]+g0[i-1][b][j])%P;
}
}
else for(j=0;j<i;j++)
{
f1[i][b][j+1]=(f1[i][b][j+1]+f1[i-1][b][j]*10)%P;
f0[i][b][j+1]=(f0[i][b][j+1]+f0[i-1][b][j])%P;
if(a<v[i])
{
g1[i][b][j+1]=(g1[i][b][j+1]+f1[i-1][b][j]*10)%P;
g0[i][b][j+1]=(g0[i][b][j+1]+f0[i-1][b][j])%P;
}
else if(a==v[i])
{
g1[i][b][j+1]=(g1[i][b][j+1]+g1[i-1][b][j]*10)%P;
g0[i][b][j+1]=(g0[i][b][j+1]+g0[i-1][b][j])%P;
}
}
}
for(a=0;a<=9;a++) for(i=1;i<=n;i++) ans=(ans+g1[n][a][i])%P;
printf("%lld",ans);
return 0;
}

【CF908G】New Year and Original Order 数位DP的更多相关文章

  1. CF908G New Year and Original Order 数位DP

    传送门 看到数据范围到\(10^{700}\)毫无疑问数位DP.那么我们最重要的问题是如何有效地维护所有数位排序之后的数的值. 对于某一个数\(x\),设\(f_{x,i} (i \in [1,9]) ...

  2. CF908G New Year and Original Order(DP,数位 DP)

    又一次降智…… (数位 DP 原来可以写这么短,学到了) 问题可以转化为求数位中 $\ge k$ 的有恰好 $j$ 位的数的个数.设为 $c_{j,k}$. 那么答案就是:(考虑把 $k$ 的贡献拆开 ...

  3. hdu-5642 King's Order(数位dp)

    题目链接: King's Order Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Othe ...

  4. CF908G New Year and Original Order

    题面 题意翻译 给定$n<=10^{700}$,问$1$到$n$中每个数在各数位排序后得到的数的和.答案$mod\;10^9+7$. 题解 考虑设$f[i][j][k][0/1]$表示前$i$位 ...

  5. 【CF908G】New Year and Original Order(动态规划)

    [CF908G]New Year and Original Order(动态规划) 题面 洛谷 CF 题解 设\(f[i][j][k][0/1]\)表示当前填到了第\(i\)位,有\(j\)个大于等于 ...

  6. 【CF908G】New Year and Original Order

    [CF908G]New Year and Original Order 题面 洛谷 题解 设\(f[i][j][k][l]\)表示当前在第\(i\)位有\(j\)位大于等于\(k\),当前有没有卡上界 ...

  7. BestCoder Round #75 King&#39;s Order dp:数位dp

    King's Order Accepts: 381 Submissions: 1361 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 655 ...

  8. CF908G Original Order

    题目大意: 定义\(R(x) = 每个数在各数位排序后得到的数\) 例如:\(R(321597) = 123579\) 给定一个\(n<=10^{700}\),求\(\sum _{i=1}^n ...

  9. HDU 5642 King's Order【数位dp】

    题目链接: http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=677&pid=1003 题意: 求长度为n的序列 ...

随机推荐

  1. UNIX环境编程学习笔记(12)——文件I/O之目录操作

    lienhua342014-09-18 1 引言 在 UNIX 系统中,目录是一种特殊的文件类型.我们可以使用 open 函数来打开目录,获取文件描述符,然后调用 stat 函数来获取目录的属性信息, ...

  2. DataList中动态显示DIV

    <%# DataBinder.Eval(Container,  "DataItem.ProductName").ToString() == "股票矩阵" ...

  3. MathType怎么编辑半开半闭区间

    数学中的公式有很多,涉及到各种各样的样式,这些公式都会用到不同的符号,每一个符号用在不同数学问题的公式中,都会有其特定的意义,比如括号.括号这个符号在除了能够表示优先运算之外,还可以代表区间的意思,小 ...

  4. MongoDB 2.4企业版分析

    作者:chszs,转载需注明.博客主页:http://blog.csdn.net/chszs MongoDB v2.4版于3月19日发布,它引入了内置的文本搜索功能,以及基于哈希的分片和众所期盼的安全 ...

  5. java okhttp发送post请求

    java的httpclient和okhttp请求网络,构造一个基本的post get请求,都比py的requests步骤多很多,也比py的自带包urllib麻烦些. 先封装成get post工具类,工 ...

  6. python -m 命令单独运行一个文件,怎么解决单独运行文件报错?

    依旧是续上篇解决为什么项目能运行,单独文件不能运行. 依旧是python3先发下目录结构,依旧是cmd运行,不要弄pycharm开始运行,否则有些错误就发现不了! 项目下面有pac1文件夹,pac1下 ...

  7. Python一个简单的数据库类封装

    #encoding:utf-8 #name:mod_db.py '''使用方法:1.在主程序中先实例化DB Mysql数据库操作类.      2.使用方法:db=database()  db.fet ...

  8. 安装office2010出现了错误,提示要安装MSXML6.10.1129.0解决方法

    将下面的内容复制到记事本中,然后将记事本存成.reg文件 Windows Registry Editor Version 5.00[HKEY_CLASSES_ROOT\TypeLib\{F5078F1 ...

  9. 转载nginx+uwsgi+django

    Django的部署可以有很多方式,采用nginx+uwsgi的方式是其中比较常见的一种方式. 在这种方式中,我们的通常做法是,将nginx作为服务器最前端,它将接收WEB的所有请求,统一管理请求.ng ...

  10. 【代码审计】iZhanCMS_v2.1 后台任意文件删除漏洞分析

      0x00 环境准备 iZhanCMS官网:http://www.izhancms.com 网站源码版本:爱站CMS(zend6.0) V2.1 程序源码下载:http://www.izhancms ...