【CF687D】Dividing Kingdom II

题意:给你一张n个点m条边的无向图,边有边权$w_i$。有q个询问,每次给出l r,问你:如果只保留编号在[l,r]中的边,你需要将所有点分成两个集合,使得这个划分的代价最小,问最小代价是什么。一个划分的代价是指,对于所有两端点在同一集合中的边,这些边的边权最大值。如果没有端点在同一集合中的边,则输出-1。

$n,q\le 1000,m\le \frac {n(n-1)} 2,w_i\le 10^9$

题解:先考虑暴力的做法,我们将所有边按权值从大到小排序,然后一个一个加到带权并查集里,标记两端点不在同一集合中,如果一条边的两端点已经在同一集合中,则输出答案。

但是问题在于边数非常大,不过仔细分析发现,我们可以将所有边按加入并查集时的情况分成如下三种:

1.如果a和b不在同一连通块内,我们连接这两个连通块,并标记a和b不在同一集合中。

2.如果a和b在同一连通块内,且a和b不在同一集合,则我们不用管。

3.如果a和b在同一连通块内,且a和b在同一集合,则输出答案。

我们令1和3这样的边为关键边。容易发现下面两条重要的引理:

引理1:关键边的数目不超过n条。

引理2:如果我们忽视非关键边,答案不变。

证明是显然的。但是这给我们一个非常重要的思路:如果我们预处理出区间内所有的关键边,则我们可以把每次查询的复杂度由O(m)变成O(n)!

进一步的,我们可以用以边的编号为下标的线段树来维护并查集。对于每个结点,我们已经处理完了它的左右两个子节点,其中每个节点都维护了该区间内的不超过n条关键边,我们只需要将左右两个节点的关键边归并起来,再用并查集处理一下即可。然后查询时,我们把所有线段树上的区间的一共$O(n\log n)$条关键边拿出来,一起处理一下即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#include <algorithm>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=1010;
const int maxm=500010;
typedef vector<int> vi;
int n,m,q;
vi s[maxm<<2];
vector<int>::iterator ia,ib;
int pa[maxm],pb[maxm],pc[maxm],f[maxn],g[maxn],p[maxm];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int find(int x)
{
if(f[x]==x) return x;
int t=f[x];
f[x]=find(t);
g[x]^=g[t];
return f[x];
}
inline vi merge(vi a,vi b)
{
int i,cnt=0,x,y;
vi c;
for(ia=a.begin();ia!=a.end();ia++) f[pa[*ia]]=pa[*ia],f[pb[*ia]]=pb[*ia],g[pa[*ia]]=g[pb[*ia]]=0;
for(ib=b.begin();ib!=b.end();ib++) f[pa[*ib]]=pa[*ib],f[pb[*ib]]=pb[*ib],g[pa[*ib]]=g[pb[*ib]]=0;
for(ia=a.begin(),ib=b.begin();ia!=a.end()||ib!=b.end();)
{
if(ia!=a.end()&&(ib==b.end()||pc[*ia]>pc[*ib])) p[++cnt]=*ia,ia++;
else p[++cnt]=*ib,ib++;
}
for(i=1;i<=cnt;i++)
{
x=pa[p[i]],y=pb[p[i]];
if(find(x)!=find(y)) g[f[x]]=g[x]^g[y]^1,f[f[x]]=f[y],c.push_back(p[i]);
else if(g[x]!=g[y]) continue;
else
{
c.push_back(p[i]);
break;
}
}
return c;
}
void build(int l,int r,int x)
{
if(l==r)
{
s[x].push_back(l);
return ;
}
int mid=(l+r)>>1;
build(l,mid,lson),build(mid+1,r,rson);
s[x]=merge(s[lson],s[rson]);
}
vi query(int l,int r,int x,int a,int b)
{
if(a<=l&&r<=b) return s[x];
int mid=(l+r)>>1;
if(b<=mid) return query(l,mid,lson,a,b);
if(a>mid) return query(mid+1,r,rson,a,b);
return merge(query(l,mid,lson,a,b),query(mid+1,r,rson,a,b));
}
int main()
{
//freopen("cf687D.in","r",stdin);
n=rd(),m=rd(),q=rd();
int i,a,b,x,y;
vi t;
for(i=1;i<=m;i++) pa[i]=rd(),pb[i]=rd(),pc[i]=rd();
build(1,m,1);
for(i=1;i<=q;i++)
{
a=rd(),b=rd();
t=query(1,m,1,a,b);
for(ia=t.begin();ia!=t.end();ia++) f[pa[*ia]]=pa[*ia],f[pb[*ia]]=pb[*ia];
for(ia=t.begin();ia!=t.end();ia++)
{
x=pa[*ia],y=pb[*ia];
if(find(x)==find(y)) break;
f[f[x]]=f[y];
}
if(ia==t.end()) puts("-1");
else printf("%d\n",pc[*ia]);
}
return 0;
}//5 9 1 4 1 46 1 3 29 3 2 58 1 5 61 2 4 88 1 2 87 4 5 58 3 5 69 3 4 28 2 7

【CF687D】Dividing Kingdom II 线段树+并查集的更多相关文章

  1. codeforces 687D Dividing Kingdom II 带权并查集(dsu)

    题意:给你m条边,每条边有一个权值,每次询问只保留编号l到r的边,让你把这个图分成两部分 一个方案的耗费是当前符合条件的边的最大权值(符合条件的边指两段点都在一个部分),问你如何分,可以让耗费最小 分 ...

  2. [WC2005]双面棋盘(线段树+并查集)

    线段树+并查集维护连通性. 好像 \(700ms\) 的时限把我的常数超级大的做法卡掉了, 必须要开 \(O_2\) 才行. 对于线段树的每一个结点都开左边的并查集,右边的并查集,然后合并. \(Co ...

  3. 2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集)

    2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集) https://www.luogu.com.cn/problem/CF811E Ste ...

  4. UVa 1455 Kingdom 线段树 并查集

    题意: 平面上有\(n\)个点,有一种操作和一种查询: \(road \, A \, B\):在\(a\),\(b\)两点之间加一条边 \(line C\):询问直线\(y=C\)经过的连通分量的个数 ...

  5. CF687D Dividing Kingdom II

    \(\mathtt{CF 687D}\) \(\mathcal{Description}\) 给你一个图有 \(n\) 个点 \((1 \leq n \leq 10^3)\) 和 \(m\) 条边 \ ...

  6. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  7. 【XSY2707】snow 线段树 并查集

    题目描述 有\(n\)个人和一条长度为\(t\)的线段,每个人还有一个工作范围(是一个区间).最开始整条线段都是白的.定义每个人的工作长度是这个人的工作范围中白色部分的长度(会随着线段改变而改变).每 ...

  8. bzoj 2054: 疯狂的馒头(线段树||并查集)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2054 线段树写法: 点的颜色只取决于最后一次染的颜色,所以我们可以倒着维护,如果当前区间之前 ...

  9. 【BZOJ1453】[Wc]Dface双面棋盘 线段树+并查集

    [BZOJ1453][Wc]Dface双面棋盘 Description Input Output Sample Input Sample Output HINT 题解:话说看到题的第一反应其实是LCT ...

随机推荐

  1. linux nginx,php开机启动

    nginx开机启动 1.首先,在linux系统的/etc/init.d/目录下创建nginx文件 vim /etc/init.d/nginx 2.加入脚本 #!/bin/bash # nginx St ...

  2. UNIX环境编程学习笔记(16)——进程管理之进程环境变量

    lienhua342014-10-03 1 环境表和环境指针 在每个进程启动时,都会接到一张环境表.环境表是一个字符指针数组,其中每个指针包含一个以 null 结束的 C 字符串的地址.全局变量env ...

  3. 为npm设置代理

    npm全称为Node Packaged Modules.它是一个用于管理基于node.js编写的package的命令行工具.其本身就是基于node.js写的,这有点像gem与ruby的关系. 在我们的 ...

  4. 【QT】Cannot find file: untitled.pro,项目路径不要包含中文。

    Cannot find file: D:\文件及下载相关\文档\untitled\untitled.pro. 17:01:45: 进程"D:\Englishpath\QT5.9.3\5.9. ...

  5. 如何在Linux系统中安装VMware

    首先打开vmware官网的下载链接:https://my.vmware.com/web/vmware/info/slug/desktop_end_user_computing/vmware_works ...

  6. python打造线程池

    # coding=utf-8 import threading import Queue import time import traceback class ThreadPoolExecutor(o ...

  7. Java -- 异常的捕获及处理 -- 范例 -- throw与throws的应用

    7.2.3 范例 -- throw与throws的应用 例:综合应用 Class : Math package limeThrowable._7_2_3; public class Math { pu ...

  8. 九度 1552 座位问题(递推DP)

    题目描述: 计算机学院的男生和女生共n个人要坐成一排玩游戏,因为计算机的女生都非常害羞,男生又很主动,所以活动的组织者要求在任何时候,一个女生的左边或者右边至少有一个女生,即每个女生均不会只与男生相邻 ...

  9. grid网格的流动一

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. trim思考

    今天发现后台订单商品名称没有的时候出现了HTML代码,然后看了一下源代码(下图是简化版本的) <?php $name = trim('<span style="font-weig ...