X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai<i(1<=i<=n)。这就是康托展开。康托展开可用代码实现。

康托展开的应用实例:

{1,2,3,4,...,n}表示1,2,3,...,n的排列 如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
他们间的对应关系可由康托展开来找到。
如我想知道321是{1,2,3}中第几个大的排列可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+1*0!就是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。

#include <iostream>
#include <string>
using namespace std; const int SIZE = 12;
const string END = "-1";
int factory[SIZE] = { 0, 1, 2, 6, 24, 120,720, 5040, 40320, 362880, 3628800,39916800 }; int main(){
while( true ){
string val;
int pos = 0;
cin>>val;
if( val == END ) break;
const int size = val.length();
for( int i = 0; i < val.length(); ++i ){
int count = 0;
for( int j = i + 1; j < val.length(); ++j ){
if( val[i] > val[j] ) count++;
}
pos += count * factory[size - i - 1];
}
cout<<val<<" is in the position of : "<<pos + 1<<endl;
}
return 0;
}

Cantor展开式的更多相关文章

  1. [知识点]Cantor展开

    // 此博文为迁移而来,写于2015年3月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vtyo.html 1.含 ...

  2. 实现 Math.Asin 迈克劳林(泰勒)展开式,结果比Math.Asin 慢一倍

    项目中需要快速求解Asin(x) 的近似值,原以为用泰勒展开式会快一些,结果比原生的慢一倍. Math.ASin        Time Elapsed:   9ms        Gen 0:    ...

  3. cantor三分集

    值得一提的是,第一次听说cantor三分集是在数字电路课上,然而数电是我最不喜欢的课程之一...... 分形大都具有自相似.自仿射性质,所以cantor三分集用递归再合适不过了,本来不想用matlab ...

  4. 洛谷 P1014 Cantor表 Label:续命模拟QAQ

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  5. NOIP199904求Cantor表

    求Cantor表 题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 ...

  6. 算法篇——Cantor的数表

    来源:<算法竞赛入门经典>例题5.4.1 题目:现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 第一项是1/1,第二项是是1/ ...

  7. [实变函数]2.5 Cantor 三分集

    1 Cantor 三分集的构造:                $$\bex P=\cap_{n=1}^\infty F_n.                   \eex$$ 2 Cantor 三分 ...

  8. wikioi 1083 Cantor表

    题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/ ...

  9. Codevs 1083 Cantor表

     时间限制: 1 s   空间限制: 128000 KB   题目等级 : 白银 Silver 题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的 ...

随机推荐

  1. 简单的CSS3 Loading动画

    最终效果如图一,gif图片稍微有点卡顿,事实上代码在浏览器里执行得很流畅.这里面用到的css3技术非常简单,分别是border-radius.伪元素.css3关键帧以及animation动画. 首先整 ...

  2. 纯css滚动视差

    1.何为滚动视差 视差滚动(Parallax Scrolling)是指让多层背景以不同的速度移动,形成立体的运动效果,带来非常出色的视觉体验. 作为网页设计的热点趋势,越来越多的网站应用了这项技术.效 ...

  3. bugku web题INSERT INTO注入

    0x01: 打开题目描述,已经将源码给了我们: <?php error_reporting(0); function getIp(){ $ip = ''; if(isset($_SERVER[' ...

  4. Oracle中Blob和Clob

    http://www.cnblogs.com/ztf2008/archive/2009/05/16/1458432.html Blob是指二进制大对象也就是英文Binary Large Object的 ...

  5. [POI2013]Taksówki

    [POI2013]Taksówki 题目大意: ABC三地在同一条直线上,AC相距\(m(m\le10^{18})\)米,AB相距\(d\),B在AC之间.总共有\(n(n\le5\times10^5 ...

  6. css实现背景图片模糊

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 使用Java进行串口SerialPort通讯

    1.准备工作        在进行串口连接通讯前,必须保证你当前操作电脑上有可用且闲置的串口.因为一般的电脑上只有一个或者两个串口,如COM1或COM2,但大多数情况下,这些串口可能会被其他的程序或者 ...

  8. 作为互联网人,你必须知道的一些IT类网站

  9. socket recv阻塞与非阻塞error总结

    recv是socket编程中最常用的函数之一,在阻塞状态的recv有时候会返回不同的值,而对于错误值也有相应的错误码,分别对应不同的状态,下面是我针对常见的几种网络状态的简单总结. 首先阻塞接收的re ...

  10. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...