摘要

作者提出了一种新的物体检测方法YOLO。YOLO之前的物体检测方法主要是通过region proposal产生大量的可能包含待检测物体的 potential bounding box,再用分类器去判断每个 bounding box里是否包含有物体,以及物体所属类别的 probability或者 confidence,如R-CNN,Fast-R-CNN,Faster-R-CNN等。
YOLO不同于这些物体检测方法,它将物体检测任务当做一个regression问题来处理,使用一个神经网络,直接从一整张图像来预测出bounding box 的坐标、box中包含物体的置信度和物体的probabilities。因为YOLO的物体检测流程是在一个神经网络里完成的,所以可以end to end来优化物体检测性能。
YOLO检测物体的速度很快,标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。网络较小的版本Fast YOLO在保持mAP是之前的其他实时物体检测器的两倍的同时,检测速度可以达到155 FPS。

相较于其他的state-of-the-art 物体检测系统,YOLO在物体定位时更容易出错,但是在背景上预测出不存在的物体(false positives)的情况会少一些。而且,YOLO比DPM、R-CNN等物体检测系统能够学到更加抽象的物体的特征,这使得YOLO可以从真实图像领域迁移到其他领域,如艺术。

核心思想

  • 整张图作为网络的输入,把 Object Detection(物体检测)问题转化成一个Regression(回归)问题,用一个卷积神经网络结构直接在输出层回归bounding box的位置和bounding box所属的类别。
  • Faster RCNN中也直接用整张图作为输入,但是faster-RCNN整体还是采用了RCNN那种proposal+classifier的思想,只不过是将提取proposal的步骤放在CNN中实现了。

算法特点

  • 将物体检测作为回归问题求解。基于一个单独的End-To-End网络,完成从原始图像的输入到物体位置和类别的输出,输入图像经过一次Inference,便能得到图像中所有物体的位置和其所属类别及相应的置信概率。
  • YOLO网络借鉴了GoogLeNet分类网络结构。不同的是,YOLO未使用Inception Module,而是使用1x1卷积层(此处1x1卷积层的存在是为了跨通道信息整合)+3x3卷积层简单替代。
  • Fast YOLO使用9个卷积层代替YOLO的24个,网络速度更快,在Titan X GPU上的速度是45 fps(frames per second),加速版的YOLO差不多是155fps。但同时损失了检测准确率。
  • 使用全图作为 Context 信息,这一点和基于sliding window以及region proposal等检测算法不一样。与Fast RCNN相比,误检测率(把背景错认为物体)降低一半多。
  • 泛化能力强,可以学到物体的generalizable representations,在自然图像上训练好的结果在艺术作品中的依然具有很好的效果。

优缺点

YOLO模型相对于之前的物体检测方法有多个优点:

1、YOLO检测物体非常快。
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、YOLO可以很好的避免背景错误,产生false positives。
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、YOLO可以学到物体的泛化特征。
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

举例说明:在本文中,网络结构参考GooLeNet模型,包含24个卷积层和2个全连接层,卷积层主要用来提取特征,全连接层主要用来预测类别概率和坐标。对于卷积层,主要使用1x1卷积来做channle reduction,然后紧跟3x3卷积。对于卷积层和全连接层,采用Leaky ReLU激活函数,但是最后一层却采用线性激活函数。除了上面这个结构,文章还提出了一个轻量级版本Fast Yolo,其仅使用9个卷积层,并且卷积层中使用更少的卷积核。图像输入为448x448(强制转换),取S=7,B=2,C=20 (因为PASCAL VOC有20个类别),所以最后有 7∗7∗30个tensor。如下图。

训练

测试

NMS:

获取目标检测结果:

参考:

https://blog.csdn.net/hrsstudy/article/details/70305791

https://blog.csdn.net/sunshineski/article/details/83518165

YOLO V1论文理解的更多相关文章

  1. YOLO V1损失函数理解

    YOLO V1损失函数理解: 首先是理论部分,YOLO网络的实现这里就不赘述,这里主要解析YOLO损失函数这一部分. 损失函数分为三个部分: 代表cell中含有真实物体的中心. pr(object) ...

  2. YOLO V2论文理解

    概述 YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darknet主页先行一步放出源代码, ...

  3. YOLO V3论文理解

    YOLO3主要的改进有:调整了网络结构:利用多尺度特征进行对象检测:对象分类用Logistic取代了softmax. 1.Darknet-53 network在论文中虽然有给网络的图,但我还是简单说一 ...

  4. YOLO v1论文笔记

    You Only Look Once:Unified, Real-Time Object Detection   论文链接:https://arxiv.org/abs/1506.02640 Homep ...

  5. 目标检测论文解读5——YOLO v1

    背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...

  6. YOLO v1到YOLO v4(上)

    YOLO v1到YOLO v4(上) 一.  YOLO v1 这是继RCNN,fast-RCNN和faster-RCNN之后,rbg(RossGirshick)针对DL目标检测速度问题提出的另外一种框 ...

  7. 目标检测之YOLO V1

    前面介绍的R-CNN系的目标检测采用的思路是:首先在图像上提取一系列的候选区域,然后将候选区域输入到网络中修正候选区域的边框以定位目标,对候选区域进行分类以识别.虽然,在Faster R-CNN中利用 ...

  8. 目标检测:YOLO(v1 to v3)——学习笔记

    前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...

  9. Object Detection(RCNN, SPPNet, Fast RCNN, Faster RCNN, YOLO v1)

    RCNN -> SPPNet -> Fast-RCNN -> Faster-RCNN -> FPN YOLO v1-v3 Reference RCNN: Rich featur ...

随机推荐

  1. map() 方法

    1. 方法概述 map() 方法返回一个由原数组中的每个元素调用一个指定方法后的返回值组成的新数组. 2. 例子 2.1 在字符串中使用map 在一个 String 上使用 map 方法获取字符串中每 ...

  2. mysql导入数据方法和报错解决

    mysql -u root -p databasename < db.sql 数据库导入数据时,MySQL收到下面异常:ERROR 1153 (08S01): Got a packet bigg ...

  3. mysql外键使用和事物使用

    mysql外键功能主要是为了保证关联表数据的一致性,主要目的是控制存储在外键表中的数据. 使两张表形成关联,外键只能引用外表中的列的值! 例如: a b 两个表 a表中存有 客户号,客户名称 b表中存 ...

  4. memcached小试牛刀

    memcached安装 [root@localhost ~]# cd /usr/local/src [root@localhost src]#wget http://www.memcached.org ...

  5. 20155308 2016-2017-2 《Java程序设计》第9周学习总结

    20155308 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 第十六章 整合数据库 16.1 JDBC入门 驱动的四种类型 JDBC-ODBC Bridg ...

  6. Python 让PIP源使用国内镜像,提升下载速度和安装成功率

    对于Python开发用户来讲,PIP安装软件包是家常便饭.但国外的源下载速度实在太慢,浪费时间.而且经常出现下载后安装出错问题.所以把PIP安装源替换成国内镜像,可以大幅提升下载速度,还可以提高安装成 ...

  7. iframe嵌套

    iframe基本内涵 通常我们使用iframe直接直接在页面嵌套iframe标签指定src就可以了. <iframe src="demo_iframe_sandbox.htm" ...

  8. C/C++之全局、static对象/变量的初始化问题

    关于全局.static对象/变量的初始化问题 1. 全局变量.static变量的初始化时机:main()函数执行之前(或者说main中第一个用户语句执行之前). 2. 初始化顺序. 1)全局对象.外部 ...

  9. phpstorm常用快捷键(自备不全)

    CTRL+N 查找类 CTRL+SHIFT+N 全局搜索文件 ,优先文件名匹配的文件 CTRL+SHIFT+ALT+N 查找php类名/变量名 ,js方法名/变量名, css 选择器 CTRL+G 定 ...

  10. 自动对比度的opencv实现

    在http://www.cnblogs.com/Imageshop/archive/2011/11/13/2247614.html 一文中,作者给出了“自动对比度”的实现方法,非常nice 实际实现过 ...