先跪一发题目背景QAQ

显然x,y>n!,然后能够设y=n!+d

原式子能够化简成

x=n!2d+n!

那么解的个数也就是n!的因子个数,然后线性筛随便搞一搞

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<iostream>
#include<algorithm>
#define N 1000008
#define mod 1000000007
using namespace std;
int sc()
{
int i=0,f=1; char c=getchar();
while(c>'9'||c<'0'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')i=i*10+c-'0',c=getchar();
return i*f;
}
long long ans=1;
int lo[N],low[N],a[N],prime[N],s[N],top;
int sum[N],n;
void pre(int n)
{
for(int i=2;i<=n;i++)
{
if(!a[i])
s[prime[++top]=low[i]=lo[i]=i]=1;
for(int j=1;prime[j]*i<=n;j++)
{
a[i*prime[j]]=1;
lo[i*prime[j]]=prime[j];
if(i%prime[j]==0)
{
low[i*prime[j]]=low[i]*prime[j];
s[i*prime[j]]=s[i]+1;
break;
}
low[i*prime[j]]=prime[j];
s[i*prime[j]]=1;
}
}
}
int main()
{
pre(n=sc());
for(int i=2;i<=n;i++)
{
int now=i;
while(now!=1)
sum[lo[now]]+=2*s[now],now/=low[now];
}
for(int i=1;i<=n;i++)
ans=ans*(sum[i]+1)%mod;
cout<<ans;
return 0;
}

2721: [Violet 5]樱花|约数个数的更多相关文章

  1. 【BZOJ 2721】 2721: [Violet 5]樱花 (筛)

    2721: [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 599  Solved: 354 Description Input ...

  2. 2721: [Violet 5]樱花

    2721: [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 547  Solved: 322[Submit][Status][D ...

  3. bzoj 2721[Violet 5]樱花 数论

    [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 671  Solved: 395[Submit][Status][Discuss ...

  4. [BZOJ 2721] [Violet 5] 樱花 【线性筛】

    题目链接:BZOJ - 2721 题目分析 题目大意:求出 1 / x + 1 / y = 1 / n! 的正整数解 (x, y) 的个数. 显然,要求出正整数解 (x, y) 的个数,只要求出使 y ...

  5. BZOJ 2721: [Violet 5]樱花

    (X-N)(Y-N)=N^2 #include<cstdio> using namespace std; const int mod=1e9+7; int n,cnt,isprime[10 ...

  6. BZOJ_2721_[Violet 5]樱花_数学

    BZOJ_2721_[Violet 5]樱花_数学 Description Input Output $\frac{1}{x}+\frac{1}{y}=\frac{1}{m}$ $xm+ym=xy$ ...

  7. 【BZOJ2721】[Violet 5]樱花 线性筛素数

    [BZOJ2721][Violet 5]樱花 Description Input Output Sample Input 2 Sample Output 3 HINT 题解:,所以就是求(n!)2的约 ...

  8. BZOJ2721 [Violet 5]樱花

    先令n! = a: 1 / x + 1 / y = 1 / a  =>  x = y * a / (y - a) 再令 k = y - a: 于是x = a + a ^ 2 / k  => ...

  9. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. go1.8之安装配置具体步骤

    操作系统: CentOS 6.9_x64 go语言版本: 1.8.3 安装go 这里直接安装二进制,其它方式请自行搜索. 1.下载并安装go 命令如下: ? 1 2 3 wget https://st ...

  2. C#泛型委托Predicate、Action、Func

    Predicate Predicate泛型委托:表示定义一组条件并确定指定对象是否符合这些条件的方法.此委托由 Array 和 List 类的几种方法使用,用于在集合中搜索元素.通过查看源码发现 Pr ...

  3. SVG.js 引用获取整理

    一.SVG.get() 根据id获取元素 var draw = SVG('svg1').size(300, 300); var circle = draw.circle(50); circle.fil ...

  4. 深入理解VMware虚拟机网络通信原理

    VMware虚拟机的上网方式有三种:NAT.桥接.仅主机模式,本篇介绍桥接模式和NAT模式. 1.实验环境 博主的实验环境如下: 宿主机操作系统:Windows 7 VMware Workstatio ...

  5. Verilog 加法器和减法器(1)

    两个一位的二进制数x,y相加,假设和为s,进位为cout,其真值表为: 从真值表中,我们可以得到:s = x^y, cout = x&y,实现两个一位数相加的逻辑电路称为半加器. 实现该电路的 ...

  6. [leetcode]Wildcard Matching @ Python

    原题地址:https://oj.leetcode.com/problems/wildcard-matching/ 题意: Implement wildcard pattern matching wit ...

  7. 细说Request与Request.Params

    在ASP.NET编程中,有三个比较常见的来自于客户端的数据来源:QueryString, Form, Cookie .我们可以在HttpRequest中访问这三大对象,比如,可以从QueryStrin ...

  8. iOS开发-UIScreenEdgePanGestureRecognizer实战

    UIScreenEdgePanGestureRecognizer名字很长,而且关于其文档也是少的的可怜,苹果官方给的唯一的一个属性是edges,文档中的解释是这样的: A UIScreenEdgePa ...

  9. jQuery 重复加载,导致依赖于 jQuery的JS全部失效问题

    父页面引入子页面,子页面引入jQuery.js文件,父页面JS依赖jQuery.js   ,出现问题是,总提示JS对象无效.猜测jQuery加载顺序不是最早造成的. 父页面: 子页面: 从这里看 ,j ...

  10. 解决ThinkPHP的Create方法失效而没有提示错误信息的问题

    ThinkPHP中的数据创建Create方法是一个非常有用的功能,它自动根据表单数据创建数据对象(在表字段很多的情况下尤其明显) 但有时候该方法可能并未按照你期望的来工作,比如方法不工作而且还没有提示 ...